Ensemble deep generalized eigen-value random vector functional link network for classification problems

IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
M.A. Ganaie, Yogesh Kumar, Anshika Bhatia, Chavda Jayrajsinh
{"title":"Ensemble deep generalized eigen-value random vector functional link network for classification problems","authors":"M.A. Ganaie,&nbsp;Yogesh Kumar,&nbsp;Anshika Bhatia,&nbsp;Chavda Jayrajsinh","doi":"10.1016/j.compeleceng.2024.110040","DOIUrl":null,"url":null,"abstract":"<div><div>Random vector functional link neural networks have been widely used across applications due to their universal approximation property. The standard random vector functional link neural network consists of a single hidden layer network, and hence, the generalization suffers due to poor representation of features. In this work, we propose ensemble deep generalized eigen value proximal random vector functional link (edGERVFL) network for classification problems. The proposed edGERVFL improves the architecture twofold: generating a better feature representation via deep framework, followed by the ensembling of the base learners, composed of multilayer architecture, to improve the generalization performance of the model. Unlike standard RVFL-based models, the weights are optimized by solving the generalized eigenvalue problem. To showcase the performance of the proposed edGERVFL model, experiments are conducted on diverse tabular UCI binary class datasets. The experimental findings, coupled with the statistical analysis, indicate that the edGERVFL model outperforms the provided baseline models.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"123 ","pages":"Article 110040"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790624009650","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Random vector functional link neural networks have been widely used across applications due to their universal approximation property. The standard random vector functional link neural network consists of a single hidden layer network, and hence, the generalization suffers due to poor representation of features. In this work, we propose ensemble deep generalized eigen value proximal random vector functional link (edGERVFL) network for classification problems. The proposed edGERVFL improves the architecture twofold: generating a better feature representation via deep framework, followed by the ensembling of the base learners, composed of multilayer architecture, to improve the generalization performance of the model. Unlike standard RVFL-based models, the weights are optimized by solving the generalized eigenvalue problem. To showcase the performance of the proposed edGERVFL model, experiments are conducted on diverse tabular UCI binary class datasets. The experimental findings, coupled with the statistical analysis, indicate that the edGERVFL model outperforms the provided baseline models.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Electrical Engineering
Computers & Electrical Engineering 工程技术-工程:电子与电气
CiteScore
9.20
自引率
7.00%
发文量
661
审稿时长
47 days
期刊介绍: The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency. Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信