{"title":"Uncertainty in heteroscedastic Bayesian model averaging","authors":"Sébastien Jessup , Mélina Mailhot , Mathieu Pigeon","doi":"10.1016/j.insmatheco.2024.12.008","DOIUrl":null,"url":null,"abstract":"<div><div>The literature concerning liability evaluation is very well developed. It is however almost exclusively devoted to the performance of singular models. Recently, a variant of Bayesian Model Averaging (BMA) has been used for the first time to combine outstanding claims models. BMA is a widely used tool for model combination using Bayesian inference. Different versions of an expectation-maximisation (EM) algorithm are frequently used to apply BMA. This algorithm however has the issue of convergence to a single model. In this paper, we propose a numerical error integration approach to address the problem of convergence in a heteroscedastic context. We also generalise the proposed error integration approach by considering weights as a Dirichlet random variable, allowing for weights to vary. We compare the proposed approaches through simulation studies and a Property & Casualty insurance simulated dataset. We discuss some advantages of the proposed methods.</div></div>","PeriodicalId":54974,"journal":{"name":"Insurance Mathematics & Economics","volume":"121 ","pages":"Pages 63-78"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insurance Mathematics & Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167668724001331","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The literature concerning liability evaluation is very well developed. It is however almost exclusively devoted to the performance of singular models. Recently, a variant of Bayesian Model Averaging (BMA) has been used for the first time to combine outstanding claims models. BMA is a widely used tool for model combination using Bayesian inference. Different versions of an expectation-maximisation (EM) algorithm are frequently used to apply BMA. This algorithm however has the issue of convergence to a single model. In this paper, we propose a numerical error integration approach to address the problem of convergence in a heteroscedastic context. We also generalise the proposed error integration approach by considering weights as a Dirichlet random variable, allowing for weights to vary. We compare the proposed approaches through simulation studies and a Property & Casualty insurance simulated dataset. We discuss some advantages of the proposed methods.
期刊介绍:
Insurance: Mathematics and Economics publishes leading research spanning all fields of actuarial science research. It appears six times per year and is the largest journal in actuarial science research around the world.
Insurance: Mathematics and Economics is an international academic journal that aims to strengthen the communication between individuals and groups who develop and apply research results in actuarial science. The journal feels a particular obligation to facilitate closer cooperation between those who conduct research in insurance mathematics and quantitative insurance economics, and practicing actuaries who are interested in the implementation of the results. To this purpose, Insurance: Mathematics and Economics publishes high-quality articles of broad international interest, concerned with either the theory of insurance mathematics and quantitative insurance economics or the inventive application of it, including empirical or experimental results. Articles that combine several of these aspects are particularly considered.