Hybrid machine learning-based 3-dimensional UAV node localization for UAV-assisted wireless networks

Workeneh Geleta Negassa, Demissie J. Gelmecha, Ram Sewak Singh, Davinder Singh Rathee
{"title":"Hybrid machine learning-based 3-dimensional UAV node localization for UAV-assisted wireless networks","authors":"Workeneh Geleta Negassa,&nbsp;Demissie J. Gelmecha,&nbsp;Ram Sewak Singh,&nbsp;Davinder Singh Rathee","doi":"10.1016/j.cogr.2025.01.002","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a hybrid machine-learning framework for optimizing 3-Dimensional (3D) Unmanned Aerial Vehicles (UAV) node localization and resource distribution in UAV-assisted THz 6G networks to ensure efficient coverage in dynamic, high-density environments. The proposed model efficiently managed interference, adapted to UAV mobility, and ensured optimal throughput by dynamically optimizing UAV trajectories. The hybrid framework combined the strengths of Graph Neural Networks (GNN) for feature aggregation, Deep Neural Networks (DNN) for efficient resource allocation, and Double Deep Q-Networks (DDQN) for distributed decision-making. Simulation results demonstrated that the proposed model outperformed traditional machine learning models, significantly improving energy efficiency, latency, and throughput. The hybrid model achieved an optimized energy efficiency of 90 Tbps/J, reduced latency to 0.0105 ms, and delivered a network throughput of approximately 96 Tbps. The model adapts to varying link densities, maintaining stable performance even in high-density scenarios. These findings underscore the framework's potential to address key challenges in UAV-assisted 6G networks, paving the way for scalable and efficient communication in next-generation wireless systems.</div></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"5 ","pages":"Pages 61-76"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667241325000035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a hybrid machine-learning framework for optimizing 3-Dimensional (3D) Unmanned Aerial Vehicles (UAV) node localization and resource distribution in UAV-assisted THz 6G networks to ensure efficient coverage in dynamic, high-density environments. The proposed model efficiently managed interference, adapted to UAV mobility, and ensured optimal throughput by dynamically optimizing UAV trajectories. The hybrid framework combined the strengths of Graph Neural Networks (GNN) for feature aggregation, Deep Neural Networks (DNN) for efficient resource allocation, and Double Deep Q-Networks (DDQN) for distributed decision-making. Simulation results demonstrated that the proposed model outperformed traditional machine learning models, significantly improving energy efficiency, latency, and throughput. The hybrid model achieved an optimized energy efficiency of 90 Tbps/J, reduced latency to 0.0105 ms, and delivered a network throughput of approximately 96 Tbps. The model adapts to varying link densities, maintaining stable performance even in high-density scenarios. These findings underscore the framework's potential to address key challenges in UAV-assisted 6G networks, paving the way for scalable and efficient communication in next-generation wireless systems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信