Pneumonia detection from X-ray images using federated learning–An unsupervised learning approach

Q4 Engineering
Neeta Rana , Hitesh Marwaha
{"title":"Pneumonia detection from X-ray images using federated learning–An unsupervised learning approach","authors":"Neeta Rana ,&nbsp;Hitesh Marwaha","doi":"10.1016/j.measen.2024.101410","DOIUrl":null,"url":null,"abstract":"<div><div>The emergence of advanced data analysis techniques has revolutionized patient healthcare by enabling the early and efficient detection of diseases. Traditionally, disease identification relied solely on the expertise of medical professionals. However, limitations in physician availability, particularly in resource-constrained regions, can hinder timely diagnosis. Fortunately, data analysis techniques are now widely employed to address a multitude of medical disease detection. This paper presents a novel Pneumonia disease detection model by analyzing the chest X-ray data. The development of robust diagnostic tools faces a critical challenge: the lack of access to large, labeled training datasets. This challenge arises because of privacy concerns about medical data. This research proposes a solution that tackles both data scarcity and privacy concerns. It leverages an unsupervised learning model trained on decentralized datasets. The unsupervised learning approach used is an Autoencoder neural network, and the decentralized learning technique used for model training is Federated Learning. The proposed approach trains the model on data residing at multiple locations, such as healthcare institutions, without compromising patient privacy. The datasets used to train the proposed model consist of chest X-ray images of pneumonia patients and healthy individuals. It offers satisfactory performance when compared to other existing Pneumonia detection models. In similar studies, medical institutions can collaborate and develop efficient medical tools without breaching patients’ data privacy.</div></div>","PeriodicalId":34311,"journal":{"name":"Measurement Sensors","volume":"37 ","pages":"Article 101410"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Sensors","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665917424003866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of advanced data analysis techniques has revolutionized patient healthcare by enabling the early and efficient detection of diseases. Traditionally, disease identification relied solely on the expertise of medical professionals. However, limitations in physician availability, particularly in resource-constrained regions, can hinder timely diagnosis. Fortunately, data analysis techniques are now widely employed to address a multitude of medical disease detection. This paper presents a novel Pneumonia disease detection model by analyzing the chest X-ray data. The development of robust diagnostic tools faces a critical challenge: the lack of access to large, labeled training datasets. This challenge arises because of privacy concerns about medical data. This research proposes a solution that tackles both data scarcity and privacy concerns. It leverages an unsupervised learning model trained on decentralized datasets. The unsupervised learning approach used is an Autoencoder neural network, and the decentralized learning technique used for model training is Federated Learning. The proposed approach trains the model on data residing at multiple locations, such as healthcare institutions, without compromising patient privacy. The datasets used to train the proposed model consist of chest X-ray images of pneumonia patients and healthy individuals. It offers satisfactory performance when compared to other existing Pneumonia detection models. In similar studies, medical institutions can collaborate and develop efficient medical tools without breaching patients’ data privacy.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Measurement Sensors
Measurement Sensors Engineering-Industrial and Manufacturing Engineering
CiteScore
3.10
自引率
0.00%
发文量
184
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信