Loosening rocks detection at Draa Sfar deep underground mine in Morocco using infrared thermal imaging and image segmentation models

Kaoutar Clero , Said Ed-Diny , Mohammed Achalhi , Mouhamed Cherkaoui , Imad El Harraki , Sanaa El Fkihi , Intissar Benzakour , Tarik Soror , Said Rziki , Hamd Ait Abdelali , Hicham Tagemouati , François Bourzeix
{"title":"Loosening rocks detection at Draa Sfar deep underground mine in Morocco using infrared thermal imaging and image segmentation models","authors":"Kaoutar Clero ,&nbsp;Said Ed-Diny ,&nbsp;Mohammed Achalhi ,&nbsp;Mouhamed Cherkaoui ,&nbsp;Imad El Harraki ,&nbsp;Sanaa El Fkihi ,&nbsp;Intissar Benzakour ,&nbsp;Tarik Soror ,&nbsp;Said Rziki ,&nbsp;Hamd Ait Abdelali ,&nbsp;Hicham Tagemouati ,&nbsp;François Bourzeix","doi":"10.1016/j.aiig.2025.100106","DOIUrl":null,"url":null,"abstract":"<div><div>Rockfalls are among the frequent hazards in underground mines worldwide, requiring effective methods for detecting unstable rock blocks to ensure miners' and equipment's safety. This study proposes a novel approach for identifying potential rockfall zones using infrared thermal imaging and image segmentation techniques. Infrared images of rock blocks were captured at the Draa Sfar deep underground mine in Morocco using the FLUKE TI401 PRO thermal camera. Two segmentation methods were applied to locate the potential unstable areas: the classical thresholding and the K-means clustering model. The results show that while thresholding allows a binary distinction between stable and unstable areas, K-means clustering is more accurate, especially when using multiple clusters to show different risk levels. The close match between the clustering masks of unstable blocks and their corresponding visible light images further validated this. The findings confirm that thermal image segmentation can serve as an alternative method for predicting rockfalls and monitoring geotechnical issues in underground mines. Underground operators worldwide can apply this approach to monitor rock mass stability. However, further research is recommended to enhance these results, particularly through deep learning-based segmentation and object detection models.</div></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"6 1","pages":"Article 100106"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666544125000024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rockfalls are among the frequent hazards in underground mines worldwide, requiring effective methods for detecting unstable rock blocks to ensure miners' and equipment's safety. This study proposes a novel approach for identifying potential rockfall zones using infrared thermal imaging and image segmentation techniques. Infrared images of rock blocks were captured at the Draa Sfar deep underground mine in Morocco using the FLUKE TI401 PRO thermal camera. Two segmentation methods were applied to locate the potential unstable areas: the classical thresholding and the K-means clustering model. The results show that while thresholding allows a binary distinction between stable and unstable areas, K-means clustering is more accurate, especially when using multiple clusters to show different risk levels. The close match between the clustering masks of unstable blocks and their corresponding visible light images further validated this. The findings confirm that thermal image segmentation can serve as an alternative method for predicting rockfalls and monitoring geotechnical issues in underground mines. Underground operators worldwide can apply this approach to monitor rock mass stability. However, further research is recommended to enhance these results, particularly through deep learning-based segmentation and object detection models.
基于红外热成像和图像分割模型的摩洛哥Draa Sfar深部地下矿松动岩探测
岩崩是世界范围内地下矿山频发的灾害之一,为保证矿工和设备的安全,需要有效的检测不稳定岩块的方法。本研究提出了一种利用红外热成像和图像分割技术识别潜在岩崩带的新方法。利用FLUKE TI401 PRO热像仪在摩洛哥Draa Sfar深部地下矿山拍摄了岩石块的红外图像。采用经典阈值分割和k均值聚类两种分割方法定位潜在的不稳定区域。结果表明,虽然阈值允许对稳定和不稳定区域进行二元区分,但K-means聚类更准确,特别是当使用多个聚类来显示不同的风险水平时。不稳定块的聚类掩模与其对应的可见光图像的紧密匹配进一步验证了这一点。研究结果证实,热图像分割可以作为地下矿山岩崩预测和岩土工程问题监测的替代方法。世界各地的地下运营商都可以应用这种方法来监测岩体的稳定性。然而,建议进一步研究以增强这些结果,特别是通过基于深度学习的分割和目标检测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信