Integrated model for segmentation of glomeruli in kidney images

Gurjinder Kaur, Meenu Garg, Sheifali Gupta
{"title":"Integrated model for segmentation of glomeruli in kidney images","authors":"Gurjinder Kaur,&nbsp;Meenu Garg,&nbsp;Sheifali Gupta","doi":"10.1016/j.cogr.2024.11.007","DOIUrl":null,"url":null,"abstract":"<div><div>Kidney diseases, especially those that affect the glomeruli, have become more common worldwide in recent years. Accurate and early detection of glomeruli is critical for accurately diagnosing kidney problems and determining the most effective treatment options. Our study proposed an advanced model, FResMRCNN, an enhanced version of Mask R-CNN, for automatically detecting and segmenting the glomeruli in PAS-stained human kidney images. The model integrates the power of FPN with a ResNet101 backbone, which was selected after assessing seven different backbone architectures. The integration of FPN and ResNet101 into the FResMRCNN model improves glomeruli detection, segmentation accuracy and stability by representing multi-scale features. We trained and tested our model using the HuBMAP Kidney dataset, which contains high-resolution PAS-stained microscopy images. During the study, the effectiveness of our proposed model is examined by generating bounding boxes and predicted masks of glomeruli. The performance of the FResMRCNN model is evaluated using three performance metrics, including the Dice coefficient, Jaccard index, and binary cross-entropy loss, which show promising results in accurately segmenting glomeruli.</div></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"5 ","pages":"Pages 1-13"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667241324000211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Kidney diseases, especially those that affect the glomeruli, have become more common worldwide in recent years. Accurate and early detection of glomeruli is critical for accurately diagnosing kidney problems and determining the most effective treatment options. Our study proposed an advanced model, FResMRCNN, an enhanced version of Mask R-CNN, for automatically detecting and segmenting the glomeruli in PAS-stained human kidney images. The model integrates the power of FPN with a ResNet101 backbone, which was selected after assessing seven different backbone architectures. The integration of FPN and ResNet101 into the FResMRCNN model improves glomeruli detection, segmentation accuracy and stability by representing multi-scale features. We trained and tested our model using the HuBMAP Kidney dataset, which contains high-resolution PAS-stained microscopy images. During the study, the effectiveness of our proposed model is examined by generating bounding boxes and predicted masks of glomeruli. The performance of the FResMRCNN model is evaluated using three performance metrics, including the Dice coefficient, Jaccard index, and binary cross-entropy loss, which show promising results in accurately segmenting glomeruli.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信