Small target drone algorithm in low-altitude complex urban scenarios based on ESMS-YOLOv7

Yuntao Wei, Xiujia Wang, Chunjuan Bo, Zhan Shi
{"title":"Small target drone algorithm in low-altitude complex urban scenarios based on ESMS-YOLOv7","authors":"Yuntao Wei,&nbsp;Xiujia Wang,&nbsp;Chunjuan Bo,&nbsp;Zhan Shi","doi":"10.1016/j.cogr.2024.11.004","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing use and militarization of UAV technology presents significant challenges to nations and societies. Notably, there is a deficit in anti- UAV technologies for civilian use, particularly in complex urban environments at low altitudes. This paper proposes the ESMS-YOLOv7 algorithm, which is specifically engineered to detect small target UAVs in such challenging urban landscapes. The algorithm focuses on the extraction of features from small target UAVs in urban contexts. Enhancements to YOLOv7 include the integration of the ELAN-C module, the SimSPPFCSPC-R module, and the MP-CBAM module, which collectively improve the network's ability to extract features and focus on small target UAVs. Additionally, the SIOU loss function is employed to increase the model's robustness. The effectiveness of the ESMS-YOLOv7 algorithm is validated through its performance on the DUT Anti-UAV dataset, where it exhibits superior capabilities relative to other leading algorithms.</div></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"5 ","pages":"Pages 14-25"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667241324000181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing use and militarization of UAV technology presents significant challenges to nations and societies. Notably, there is a deficit in anti- UAV technologies for civilian use, particularly in complex urban environments at low altitudes. This paper proposes the ESMS-YOLOv7 algorithm, which is specifically engineered to detect small target UAVs in such challenging urban landscapes. The algorithm focuses on the extraction of features from small target UAVs in urban contexts. Enhancements to YOLOv7 include the integration of the ELAN-C module, the SimSPPFCSPC-R module, and the MP-CBAM module, which collectively improve the network's ability to extract features and focus on small target UAVs. Additionally, the SIOU loss function is employed to increase the model's robustness. The effectiveness of the ESMS-YOLOv7 algorithm is validated through its performance on the DUT Anti-UAV dataset, where it exhibits superior capabilities relative to other leading algorithms.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信