Tuning the optical and photocatalytic properties of hexagonal boron nitride through Fe and co doping: A DFT study

IF 3 3区 化学 Q3 CHEMISTRY, PHYSICAL
M. Bouziani , A. Bouziani , H. Zaari , F. Mezzat , R. Hausler
{"title":"Tuning the optical and photocatalytic properties of hexagonal boron nitride through Fe and co doping: A DFT study","authors":"M. Bouziani ,&nbsp;A. Bouziani ,&nbsp;H. Zaari ,&nbsp;F. Mezzat ,&nbsp;R. Hausler","doi":"10.1016/j.comptc.2025.115095","DOIUrl":null,"url":null,"abstract":"<div><div>Hexagonal boron nitride (h-BN), a promising two-dimensional material, is known for its wide band gap (∼6 eV) and exceptional thermal and chemical stability. However, its wide band gap limits its photocatalytic applications to the ultraviolet (UV) region. In this study, we explore the effects of Iron (Fe) and Cobalt (Co) on the electronic structure, optical properties, and photocatalytic efficiency of h-BN using Density Functional Theory (DFT). The introduction of Fe and Co into the h-BN lattice is anticipated to reduce the band gap, enhance visible-light absorption, and mitigate electron-hole recombination. Our DFT calculations reveal that the doping process creates impurity states within the band gap, significantly altering the electronic structure and improving the photocatalytic performance of h-BN. The magnetic properties of Fe and Co not only modulate the electronic characteristics but also facilitate the recovery and reuse of the photocatalyst, contributing to the system's sustainability. This work provides valuable insights into the potential of Fe and Co doped h-BN for advanced photocatalytic applications, paving the way for its use in environmental remediation and renewable energy technologies.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1245 ","pages":"Article 115095"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210271X25000313","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hexagonal boron nitride (h-BN), a promising two-dimensional material, is known for its wide band gap (∼6 eV) and exceptional thermal and chemical stability. However, its wide band gap limits its photocatalytic applications to the ultraviolet (UV) region. In this study, we explore the effects of Iron (Fe) and Cobalt (Co) on the electronic structure, optical properties, and photocatalytic efficiency of h-BN using Density Functional Theory (DFT). The introduction of Fe and Co into the h-BN lattice is anticipated to reduce the band gap, enhance visible-light absorption, and mitigate electron-hole recombination. Our DFT calculations reveal that the doping process creates impurity states within the band gap, significantly altering the electronic structure and improving the photocatalytic performance of h-BN. The magnetic properties of Fe and Co not only modulate the electronic characteristics but also facilitate the recovery and reuse of the photocatalyst, contributing to the system's sustainability. This work provides valuable insights into the potential of Fe and Co doped h-BN for advanced photocatalytic applications, paving the way for its use in environmental remediation and renewable energy technologies.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
10.70%
发文量
331
审稿时长
31 days
期刊介绍: Computational and Theoretical Chemistry publishes high quality, original reports of significance in computational and theoretical chemistry including those that deal with problems of structure, properties, energetics, weak interactions, reaction mechanisms, catalysis, and reaction rates involving atoms, molecules, clusters, surfaces, and bulk matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信