{"title":"Model predictive control for unprotected left-turn based on sequential convex programming","authors":"Changlong Hao, Yuan Zhang, Yuanqing Xia","doi":"10.1016/j.jai.2024.10.001","DOIUrl":null,"url":null,"abstract":"<div><div>In autonomous driving, an unprotected left turn is a highly challenging scenario. It refers to the situation where there is no dedicated traffic signal controlling the left turns; instead, left-turning vehicles rely on the same traffic signal as the through traffic. This presents a significant challenge, as left-turning vehicles may encounter oncoming traffic with high speeds and pedestrians crossing against red lights. To address this issue, we propose a Model Predictive Control (MPC) framework to predict high-quality future trajectories. In particular, we have adopted the infinity norm to describe the obstacle avoidance for rectangular vehicles. The high degree of non-convexity due to coupling terms in our model makes its optimization challenging. Our way to solve it is to employ Sequential Convex Optimization (SCP) to approximate the original non-convex problem near certain initial solutions. Our method performs well in the comparison with the widely used sampling-based planning methods.</div></div>","PeriodicalId":100755,"journal":{"name":"Journal of Automation and Intelligence","volume":"3 4","pages":"Pages 230-239"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation and Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949855424000479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In autonomous driving, an unprotected left turn is a highly challenging scenario. It refers to the situation where there is no dedicated traffic signal controlling the left turns; instead, left-turning vehicles rely on the same traffic signal as the through traffic. This presents a significant challenge, as left-turning vehicles may encounter oncoming traffic with high speeds and pedestrians crossing against red lights. To address this issue, we propose a Model Predictive Control (MPC) framework to predict high-quality future trajectories. In particular, we have adopted the infinity norm to describe the obstacle avoidance for rectangular vehicles. The high degree of non-convexity due to coupling terms in our model makes its optimization challenging. Our way to solve it is to employ Sequential Convex Optimization (SCP) to approximate the original non-convex problem near certain initial solutions. Our method performs well in the comparison with the widely used sampling-based planning methods.