SLIFER: Investigating performance and robustness of malware detection pipelines

IF 4.8 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Andrea Ponte , Dmitrijs Trizna , Luca Demetrio , Battista Biggio , Ivan Tesfai Ogbu , Fabio Roli
{"title":"SLIFER: Investigating performance and robustness of malware detection pipelines","authors":"Andrea Ponte ,&nbsp;Dmitrijs Trizna ,&nbsp;Luca Demetrio ,&nbsp;Battista Biggio ,&nbsp;Ivan Tesfai Ogbu ,&nbsp;Fabio Roli","doi":"10.1016/j.cose.2024.104264","DOIUrl":null,"url":null,"abstract":"<div><div>As a result of decades of research, Windows malware detection is approached through a plethora of techniques. However, there is an ongoing mismatch between academia – which pursues an optimal performances in terms of detection rate and low false alarms – and the requirements of real-world scenarios. In particular, academia focuses on combining static and dynamic analysis within a single or ensemble of models, falling into several pitfalls like (i) firing dynamic analysis without considering the computational burden it requires; (ii) discarding impossible-to-analyze samples; and (iii) analyzing robustness against adversarial attacks without considering that malware detectors are complemented with more non-machine-learning components. Thus, in this paper we bridge these gaps, by investigating the properties of malware detectors built with multiple and different types of analysis. To do so, we develop SLIFER, a Windows malware detection pipeline sequentially leveraging both static and dynamic analysis, interrupting computations as soon as one module triggers an alarm, requiring dynamic analysis only when needed. Contrary to the state of the art, we investigate how to deal with samples that impede analyzes, showing how much they impact performances, concluding that it is better to flag them as legitimate to not drastically increase false alarms. Lastly, we perform a robustness evaluation of SLIFER. Counter-intuitively, the injection of new content is either blocked more by signatures than dynamic analysis, due to byte artifacts created by the attack, or it is able to avoid detection from signatures, as they rely on constraints on file size disrupted by attacks. As far as we know, we are the first to investigate the properties of sequential malware detectors, shedding light on their behavior in real production environment.</div></div>","PeriodicalId":51004,"journal":{"name":"Computers & Security","volume":"150 ","pages":"Article 104264"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Security","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167404824005704","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

As a result of decades of research, Windows malware detection is approached through a plethora of techniques. However, there is an ongoing mismatch between academia – which pursues an optimal performances in terms of detection rate and low false alarms – and the requirements of real-world scenarios. In particular, academia focuses on combining static and dynamic analysis within a single or ensemble of models, falling into several pitfalls like (i) firing dynamic analysis without considering the computational burden it requires; (ii) discarding impossible-to-analyze samples; and (iii) analyzing robustness against adversarial attacks without considering that malware detectors are complemented with more non-machine-learning components. Thus, in this paper we bridge these gaps, by investigating the properties of malware detectors built with multiple and different types of analysis. To do so, we develop SLIFER, a Windows malware detection pipeline sequentially leveraging both static and dynamic analysis, interrupting computations as soon as one module triggers an alarm, requiring dynamic analysis only when needed. Contrary to the state of the art, we investigate how to deal with samples that impede analyzes, showing how much they impact performances, concluding that it is better to flag them as legitimate to not drastically increase false alarms. Lastly, we perform a robustness evaluation of SLIFER. Counter-intuitively, the injection of new content is either blocked more by signatures than dynamic analysis, due to byte artifacts created by the attack, or it is able to avoid detection from signatures, as they rely on constraints on file size disrupted by attacks. As far as we know, we are the first to investigate the properties of sequential malware detectors, shedding light on their behavior in real production environment.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Security
Computers & Security 工程技术-计算机:信息系统
CiteScore
12.40
自引率
7.10%
发文量
365
审稿时长
10.7 months
期刊介绍: Computers & Security is the most respected technical journal in the IT security field. With its high-profile editorial board and informative regular features and columns, the journal is essential reading for IT security professionals around the world. Computers & Security provides you with a unique blend of leading edge research and sound practical management advice. It is aimed at the professional involved with computer security, audit, control and data integrity in all sectors - industry, commerce and academia. Recognized worldwide as THE primary source of reference for applied research and technical expertise it is your first step to fully secure systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信