Andrea Ponte , Dmitrijs Trizna , Luca Demetrio , Battista Biggio , Ivan Tesfai Ogbu , Fabio Roli
{"title":"SLIFER: Investigating performance and robustness of malware detection pipelines","authors":"Andrea Ponte , Dmitrijs Trizna , Luca Demetrio , Battista Biggio , Ivan Tesfai Ogbu , Fabio Roli","doi":"10.1016/j.cose.2024.104264","DOIUrl":null,"url":null,"abstract":"<div><div>As a result of decades of research, Windows malware detection is approached through a plethora of techniques. However, there is an ongoing mismatch between academia – which pursues an optimal performances in terms of detection rate and low false alarms – and the requirements of real-world scenarios. In particular, academia focuses on combining static and dynamic analysis within a single or ensemble of models, falling into several pitfalls like (i) firing dynamic analysis without considering the computational burden it requires; (ii) discarding impossible-to-analyze samples; and (iii) analyzing robustness against adversarial attacks without considering that malware detectors are complemented with more non-machine-learning components. Thus, in this paper we bridge these gaps, by investigating the properties of malware detectors built with multiple and different types of analysis. To do so, we develop SLIFER, a Windows malware detection pipeline sequentially leveraging both static and dynamic analysis, interrupting computations as soon as one module triggers an alarm, requiring dynamic analysis only when needed. Contrary to the state of the art, we investigate how to deal with samples that impede analyzes, showing how much they impact performances, concluding that it is better to flag them as legitimate to not drastically increase false alarms. Lastly, we perform a robustness evaluation of SLIFER. Counter-intuitively, the injection of new content is either blocked more by signatures than dynamic analysis, due to byte artifacts created by the attack, or it is able to avoid detection from signatures, as they rely on constraints on file size disrupted by attacks. As far as we know, we are the first to investigate the properties of sequential malware detectors, shedding light on their behavior in real production environment.</div></div>","PeriodicalId":51004,"journal":{"name":"Computers & Security","volume":"150 ","pages":"Article 104264"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Security","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167404824005704","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
As a result of decades of research, Windows malware detection is approached through a plethora of techniques. However, there is an ongoing mismatch between academia – which pursues an optimal performances in terms of detection rate and low false alarms – and the requirements of real-world scenarios. In particular, academia focuses on combining static and dynamic analysis within a single or ensemble of models, falling into several pitfalls like (i) firing dynamic analysis without considering the computational burden it requires; (ii) discarding impossible-to-analyze samples; and (iii) analyzing robustness against adversarial attacks without considering that malware detectors are complemented with more non-machine-learning components. Thus, in this paper we bridge these gaps, by investigating the properties of malware detectors built with multiple and different types of analysis. To do so, we develop SLIFER, a Windows malware detection pipeline sequentially leveraging both static and dynamic analysis, interrupting computations as soon as one module triggers an alarm, requiring dynamic analysis only when needed. Contrary to the state of the art, we investigate how to deal with samples that impede analyzes, showing how much they impact performances, concluding that it is better to flag them as legitimate to not drastically increase false alarms. Lastly, we perform a robustness evaluation of SLIFER. Counter-intuitively, the injection of new content is either blocked more by signatures than dynamic analysis, due to byte artifacts created by the attack, or it is able to avoid detection from signatures, as they rely on constraints on file size disrupted by attacks. As far as we know, we are the first to investigate the properties of sequential malware detectors, shedding light on their behavior in real production environment.
期刊介绍:
Computers & Security is the most respected technical journal in the IT security field. With its high-profile editorial board and informative regular features and columns, the journal is essential reading for IT security professionals around the world.
Computers & Security provides you with a unique blend of leading edge research and sound practical management advice. It is aimed at the professional involved with computer security, audit, control and data integrity in all sectors - industry, commerce and academia. Recognized worldwide as THE primary source of reference for applied research and technical expertise it is your first step to fully secure systems.