Einar Bjarki Gunnarsson , Kevin Leder , Xuanming Zhang
{"title":"Limit theorems for the site frequency spectrum of neutral mutations in an exponentially growing population","authors":"Einar Bjarki Gunnarsson , Kevin Leder , Xuanming Zhang","doi":"10.1016/j.spa.2025.104565","DOIUrl":null,"url":null,"abstract":"<div><div>The site frequency spectrum (SFS) is a widely used summary statistic of genomic data. Motivated by recent evidence for the role of neutral evolution in cancer, we investigate the SFS of neutral mutations in an exponentially growing population. Using branching process techniques, we establish (first-order) almost sure convergence results for the SFS of a Galton–Watson process, evaluated either at a fixed time or at the stochastic time at which the population first reaches a certain size. We finally use our results to construct consistent estimators for the extinction probability and the effective mutation rate of a birth–death process.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"182 ","pages":"Article 104565"},"PeriodicalIF":1.1000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925000043","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
The site frequency spectrum (SFS) is a widely used summary statistic of genomic data. Motivated by recent evidence for the role of neutral evolution in cancer, we investigate the SFS of neutral mutations in an exponentially growing population. Using branching process techniques, we establish (first-order) almost sure convergence results for the SFS of a Galton–Watson process, evaluated either at a fixed time or at the stochastic time at which the population first reaches a certain size. We finally use our results to construct consistent estimators for the extinction probability and the effective mutation rate of a birth–death process.
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.