Moving homogenization model for elastic wave propagation in a porous composite with gradient porosity

IF 4.3 2区 工程技术 Q1 ACOUSTICS
Shiwen Feng , Q.M. Li
{"title":"Moving homogenization model for elastic wave propagation in a porous composite with gradient porosity","authors":"Shiwen Feng ,&nbsp;Q.M. Li","doi":"10.1016/j.jsv.2025.118974","DOIUrl":null,"url":null,"abstract":"<div><div>The elastic wave propagation in gradient porous composite depends highly on the porosity gradient. There are limited theoretical studies to understand the wave propagation behavior in such composite mainly due to the lack of efficient and accurate modeling tools. To address this issue, a moving homogenization model is developed to characterize wave propagation behavior in gradient porous composites when the multiple wave scattering caused by cavities with gradient porosity is considered. The gradient porous composite is approximated by a series of segments with piecewise uniform porosities in order to meet the condition to employ the multiple scattering model developed by Waterman and Truell [P.C. Waterman, R. Truell, Multiple scattering of waves, Journal of Mathematical Physics 2 (1961) 512-537] in each segment. The moving average technique is applied to consider the multiple scattering effects from cavities in other segments. The moving homogenization model based on modified double moving average is formulated to obtain the equivalent complex wavenumber for each segment to allow the prediction of the wave propagation through these segments. The proposed model is verified numerically by meso-scale finite element simulations of the anti-plane shear horizonal (SH) wave propagation in a gradient porous composite. The validity conditions of the proposed model are determined analytically and numerically. Finally, a parametric analysis is conducted to reveal the gradient variation effects on wave propagation behavior.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"603 ","pages":"Article 118974"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X25000483","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The elastic wave propagation in gradient porous composite depends highly on the porosity gradient. There are limited theoretical studies to understand the wave propagation behavior in such composite mainly due to the lack of efficient and accurate modeling tools. To address this issue, a moving homogenization model is developed to characterize wave propagation behavior in gradient porous composites when the multiple wave scattering caused by cavities with gradient porosity is considered. The gradient porous composite is approximated by a series of segments with piecewise uniform porosities in order to meet the condition to employ the multiple scattering model developed by Waterman and Truell [P.C. Waterman, R. Truell, Multiple scattering of waves, Journal of Mathematical Physics 2 (1961) 512-537] in each segment. The moving average technique is applied to consider the multiple scattering effects from cavities in other segments. The moving homogenization model based on modified double moving average is formulated to obtain the equivalent complex wavenumber for each segment to allow the prediction of the wave propagation through these segments. The proposed model is verified numerically by meso-scale finite element simulations of the anti-plane shear horizonal (SH) wave propagation in a gradient porous composite. The validity conditions of the proposed model are determined analytically and numerically. Finally, a parametric analysis is conducted to reveal the gradient variation effects on wave propagation behavior.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Sound and Vibration
Journal of Sound and Vibration 工程技术-工程:机械
CiteScore
9.10
自引率
10.60%
发文量
551
审稿时长
69 days
期刊介绍: The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application. JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信