Few-shot learning based histopathological image classification of colorectal cancer

IF 4.4 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Rui Li , Xiaoyan Li , Hongzan Sun , Jinzhu Yang , Md Rahaman , Marcin Grzegozek , Tao Jiang , Xinyu Huang , Chen Li
{"title":"Few-shot learning based histopathological image classification of colorectal cancer","authors":"Rui Li ,&nbsp;Xiaoyan Li ,&nbsp;Hongzan Sun ,&nbsp;Jinzhu Yang ,&nbsp;Md Rahaman ,&nbsp;Marcin Grzegozek ,&nbsp;Tao Jiang ,&nbsp;Xinyu Huang ,&nbsp;Chen Li","doi":"10.1016/j.imed.2024.05.003","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Colorectal cancer is a prevalent and deadly disease worldwide, posing significant diagnostic challenges. Traditional histopathologic image classification is often inefficient and subjective. Although some histopathologists use computer-aided diagnosis to improve efficiency, these methods depend heavily on extensive data and specific annotations, limiting their development. To address these challenges, this paper proposes a method based on few-shot learning.</div></div><div><h3>Methods</h3><div>This study introduced a few-shot learning approach that combines transfer learning and contrastive learning to classify colorectal cancer histopathology images into benign and malignant categories. The model comprises modules for feature extraction, dimensionality reduction, and classification, trained using a combination of contrast loss and cross-entropy loss. In this paper, we detailed the setup of hyperparameters: <span><math><mi>n</mi></math></span>-way, <span><math><mi>k</mi></math></span>-shot, <span><math><mi>β</mi></math></span>, and the creation of support, query, and test datasets.</div></div><div><h3>Results</h3><div>Our method achieved over 98% accuracy on a query dataset with 35 samples per category using only 10 training samples per category. We documented the model’s loss, accuracy, and the confusion matrix of the results. Additionally, we employed the <span><math><mi>t</mi></math></span>-SNE algorithm to analyze and assess the model’s classification performance.</div></div><div><h3>Conclusion</h3><div>The proposed model may demonstrate significant advantages in accuracy and minimal data dependency, performing robustly across all tested <span><math><mi>n</mi></math></span>-way, <span><math><mi>k</mi></math></span>-shot scenarios. It consistently achieved over 93% accuracy on comprehensive test datasets, including 1916 samples, confirming its high classification accuracy and strong generalization capability. Our research could advance the use of few-shot learning in medical diagnostics and also lays the groundwork for extending it to deal with rare, difficult-to-diagnose cases.</div></div>","PeriodicalId":73400,"journal":{"name":"Intelligent medicine","volume":"4 4","pages":"Pages 256-267"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667102624000639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Colorectal cancer is a prevalent and deadly disease worldwide, posing significant diagnostic challenges. Traditional histopathologic image classification is often inefficient and subjective. Although some histopathologists use computer-aided diagnosis to improve efficiency, these methods depend heavily on extensive data and specific annotations, limiting their development. To address these challenges, this paper proposes a method based on few-shot learning.

Methods

This study introduced a few-shot learning approach that combines transfer learning and contrastive learning to classify colorectal cancer histopathology images into benign and malignant categories. The model comprises modules for feature extraction, dimensionality reduction, and classification, trained using a combination of contrast loss and cross-entropy loss. In this paper, we detailed the setup of hyperparameters: n-way, k-shot, β, and the creation of support, query, and test datasets.

Results

Our method achieved over 98% accuracy on a query dataset with 35 samples per category using only 10 training samples per category. We documented the model’s loss, accuracy, and the confusion matrix of the results. Additionally, we employed the t-SNE algorithm to analyze and assess the model’s classification performance.

Conclusion

The proposed model may demonstrate significant advantages in accuracy and minimal data dependency, performing robustly across all tested n-way, k-shot scenarios. It consistently achieved over 93% accuracy on comprehensive test datasets, including 1916 samples, confirming its high classification accuracy and strong generalization capability. Our research could advance the use of few-shot learning in medical diagnostics and also lays the groundwork for extending it to deal with rare, difficult-to-diagnose cases.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Intelligent medicine
Intelligent medicine Surgery, Radiology and Imaging, Artificial Intelligence, Biomedical Engineering
CiteScore
5.20
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信