Proteomic analysis reveals immune-related proteins of coelomic fluid in Urechis unicinctus

IF 2.2 2区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sijie Wang , Yuxin Wu , Baiyu Li , Chenxiao Xi , Xiangjun Deng , Guanran Ye , Xinghong Xu
{"title":"Proteomic analysis reveals immune-related proteins of coelomic fluid in Urechis unicinctus","authors":"Sijie Wang ,&nbsp;Yuxin Wu ,&nbsp;Baiyu Li ,&nbsp;Chenxiao Xi ,&nbsp;Xiangjun Deng ,&nbsp;Guanran Ye ,&nbsp;Xinghong Xu","doi":"10.1016/j.cbd.2025.101427","DOIUrl":null,"url":null,"abstract":"<div><div><em>Urechis unicinctus</em> is a marine benthic invertebrate that relies primarily on humoral immunity within the nonspecific immune system for body defense. In order to elucidate the protein components of the coelomic fluid and investigate its immune response mechanism, proteomic analysis and antimicrobial characterization of the coelomic fluid of <em>U. unicinctus</em> were carried out. A total of 2194 proteins were identified, with 427 showing differential expression in coelomocytes compared to those in the coelomic fluid supernatant. Of these proteins, 346 were upregulated and 81 were downregulated. Next, these identified proteins were analyzed for biological information, including GO, COG, and KEGG pathway analysis. The results from the GO analysis revealed that cytoplasm and ATP-binding were the two prominent categories of proteins found in the coelomocytes as well as the coelomic fluid supernatant of <em>U. unicinctus</em>. From the COG analysis, it was evident that the categories of proteins identified in the coelomocytes were essentially the same as those identified in the coelomic fluid supernatant, with only the number of proteins differing. The KEGG pathway analysis indicated that 45 pathways from the coelomic fluid supernatant and 42 from the coelomocytes were profiled, with carbon metabolism and ribosome being the two most prominent pathways. The Pfam database displayed that the immune-related proteins in <em>U. unicinctus</em> were neurofascin, cell adhesion molecule 4, receptor-type tyrosine-protein phosphatase F, limbic system-associated membrane protein, four and a half LIM domains protein 2, neuroglian, fasciclin-2, and neural cell adhesion molecule. Furthermore, the active substances from the coelomic fluid underwent isolation, purification, and antimicrobial characterization. The process yielded two purified components (b<sub>1</sub> and b<sub>2</sub>), that were found to significantly inhibit the growth of <em>Vibrio anguillarum</em>, <em>Aeromonas veronii</em>, <em>Micrococcus lysodeik</em>, and <em>Staphylococcus aureus</em>. Based on the nano LC-MS/MS and homology analysis, it was concluded the two purified proteins from b<sub>1</sub> and b<sub>2</sub> might have been histones with a molecular weight of 11,367 Da. Our study is the first to provide proteomic information on <em>U. unicinctus</em>, which can extend our understanding on the roles of functional proteins in the defense mechanism of <em>U. unicinctus</em> and contribute to the advancement of related drug development in <em>U. unicinctus</em> farming.</div></div>","PeriodicalId":55235,"journal":{"name":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","volume":"54 ","pages":"Article 101427"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1744117X25000152","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Urechis unicinctus is a marine benthic invertebrate that relies primarily on humoral immunity within the nonspecific immune system for body defense. In order to elucidate the protein components of the coelomic fluid and investigate its immune response mechanism, proteomic analysis and antimicrobial characterization of the coelomic fluid of U. unicinctus were carried out. A total of 2194 proteins were identified, with 427 showing differential expression in coelomocytes compared to those in the coelomic fluid supernatant. Of these proteins, 346 were upregulated and 81 were downregulated. Next, these identified proteins were analyzed for biological information, including GO, COG, and KEGG pathway analysis. The results from the GO analysis revealed that cytoplasm and ATP-binding were the two prominent categories of proteins found in the coelomocytes as well as the coelomic fluid supernatant of U. unicinctus. From the COG analysis, it was evident that the categories of proteins identified in the coelomocytes were essentially the same as those identified in the coelomic fluid supernatant, with only the number of proteins differing. The KEGG pathway analysis indicated that 45 pathways from the coelomic fluid supernatant and 42 from the coelomocytes were profiled, with carbon metabolism and ribosome being the two most prominent pathways. The Pfam database displayed that the immune-related proteins in U. unicinctus were neurofascin, cell adhesion molecule 4, receptor-type tyrosine-protein phosphatase F, limbic system-associated membrane protein, four and a half LIM domains protein 2, neuroglian, fasciclin-2, and neural cell adhesion molecule. Furthermore, the active substances from the coelomic fluid underwent isolation, purification, and antimicrobial characterization. The process yielded two purified components (b1 and b2), that were found to significantly inhibit the growth of Vibrio anguillarum, Aeromonas veronii, Micrococcus lysodeik, and Staphylococcus aureus. Based on the nano LC-MS/MS and homology analysis, it was concluded the two purified proteins from b1 and b2 might have been histones with a molecular weight of 11,367 Da. Our study is the first to provide proteomic information on U. unicinctus, which can extend our understanding on the roles of functional proteins in the defense mechanism of U. unicinctus and contribute to the advancement of related drug development in U. unicinctus farming.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
3.30%
发文量
69
审稿时长
33 days
期刊介绍: Comparative Biochemistry & Physiology (CBP) publishes papers in comparative, environmental and evolutionary physiology. Part D: Genomics and Proteomics (CBPD), focuses on “omics” approaches to physiology, including comparative and functional genomics, metagenomics, transcriptomics, proteomics, metabolomics, and lipidomics. Most studies employ “omics” and/or system biology to test specific hypotheses about molecular and biochemical mechanisms underlying physiological responses to the environment. We encourage papers that address fundamental questions in comparative physiology and biochemistry rather than studies with a focus that is purely technical, methodological or descriptive in nature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信