Mining area skyline objects from map-based big data using Apache Spark framework

IF 2.3 Q2 COMPUTER SCIENCE, THEORY & METHODS
Array Pub Date : 2024-12-16 DOI:10.1016/j.array.2024.100373
Chen Li , Ye Zhu , Yang Cao , Jinli Zhang , Annisa Annisa , Debo Cheng , Yasuhiko Morimoto
{"title":"Mining area skyline objects from map-based big data using Apache Spark framework","authors":"Chen Li ,&nbsp;Ye Zhu ,&nbsp;Yang Cao ,&nbsp;Jinli Zhang ,&nbsp;Annisa Annisa ,&nbsp;Debo Cheng ,&nbsp;Yasuhiko Morimoto","doi":"10.1016/j.array.2024.100373","DOIUrl":null,"url":null,"abstract":"<div><div>The computation of the skyline provides a mechanism for utilizing multiple location-based criteria to identify optimal data points. However, the efficiency of these computations diminishes and becomes more challenging as the input data expands. This study presents a novel algorithm aimed at mitigating this challenge by harnessing the capabilities of Apache Spark, a distributed processing platform, for conducting area skyline computations. The proposed algorithm enhances processing speed and scalability. In particular, our algorithm encompasses three key phases: the computation of distances between data points, the generation of distance tuples, and the execution of the skyline operators. Notably, the second phase employs a local partial skyline extraction technique to minimize the volume of data transmitted from each executor (a parallel processing procedure) to the driver (a central processing procedure). Afterwards, the driver processes the received data to determine the final skyline and creates filters to exclude irrelevant points. Extensive experimentation on eight datasets reveals that our algorithm significantly reduces both data size and computation time required for area skyline computation.</div></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"25 ","pages":"Article 100373"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005624000390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The computation of the skyline provides a mechanism for utilizing multiple location-based criteria to identify optimal data points. However, the efficiency of these computations diminishes and becomes more challenging as the input data expands. This study presents a novel algorithm aimed at mitigating this challenge by harnessing the capabilities of Apache Spark, a distributed processing platform, for conducting area skyline computations. The proposed algorithm enhances processing speed and scalability. In particular, our algorithm encompasses three key phases: the computation of distances between data points, the generation of distance tuples, and the execution of the skyline operators. Notably, the second phase employs a local partial skyline extraction technique to minimize the volume of data transmitted from each executor (a parallel processing procedure) to the driver (a central processing procedure). Afterwards, the driver processes the received data to determine the final skyline and creates filters to exclude irrelevant points. Extensive experimentation on eight datasets reveals that our algorithm significantly reduces both data size and computation time required for area skyline computation.
使用Apache Spark框架从基于地图的大数据中获取矿区天际线对象
天际线的计算提供了一种利用多个基于位置的标准来识别最佳数据点的机制。然而,随着输入数据的扩展,这些计算的效率会降低,并且变得更具挑战性。本研究提出了一种新的算法,旨在通过利用Apache Spark(一个分布式处理平台)的能力来进行区域天际线计算,从而减轻这一挑战。该算法提高了处理速度和可扩展性。特别是,我们的算法包含三个关键阶段:数据点之间距离的计算、距离元组的生成和天际线操作符的执行。值得注意的是,第二阶段采用了局部部分天际线提取技术,以最大限度地减少从每个执行程序(并行处理程序)传输到驱动程序(中央处理程序)的数据量。之后,驾驶员处理接收到的数据以确定最终的天际线,并创建过滤器以排除不相关的点。在8个数据集上的大量实验表明,我们的算法显著减少了区域天际线计算所需的数据大小和计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Array
Array Computer Science-General Computer Science
CiteScore
4.40
自引率
0.00%
发文量
93
审稿时长
45 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信