Exploring the potential of large language models for improving digital forensic investigation efficiency

IF 2 4区 医学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Akila Wickramasekara , Frank Breitinger , Mark Scanlon
{"title":"Exploring the potential of large language models for improving digital forensic investigation efficiency","authors":"Akila Wickramasekara ,&nbsp;Frank Breitinger ,&nbsp;Mark Scanlon","doi":"10.1016/j.fsidi.2024.301859","DOIUrl":null,"url":null,"abstract":"<div><div>The ever-increasing workload of digital forensic labs raises concerns about law enforcement's ability to conduct both cyber-related and non-cyber-related investigations promptly. Consequently, this article explores the potential and usefulness of integrating Large Language Models (LLMs) into digital forensic investigations to address challenges such as bias, explainability, censorship, resource-intensive infrastructure, and ethical and legal considerations. A comprehensive literature review is carried out, encompassing existing digital forensic models, tools, LLMs, deep learning techniques, and the use of LLMs in investigations. The review identifies current challenges within existing digital forensic processes and explores both the obstacles and the possibilities of incorporating LLMs. In conclusion, the study states that the adoption of LLMs in digital forensics, with appropriate constraints, has the potential to improve investigation efficiency, improve traceability, and alleviate the technical and judicial barriers faced by law enforcement entities.</div></div>","PeriodicalId":48481,"journal":{"name":"Forensic Science International-Digital Investigation","volume":"52 ","pages":"Article 301859"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Digital Investigation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666281724001860","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The ever-increasing workload of digital forensic labs raises concerns about law enforcement's ability to conduct both cyber-related and non-cyber-related investigations promptly. Consequently, this article explores the potential and usefulness of integrating Large Language Models (LLMs) into digital forensic investigations to address challenges such as bias, explainability, censorship, resource-intensive infrastructure, and ethical and legal considerations. A comprehensive literature review is carried out, encompassing existing digital forensic models, tools, LLMs, deep learning techniques, and the use of LLMs in investigations. The review identifies current challenges within existing digital forensic processes and explores both the obstacles and the possibilities of incorporating LLMs. In conclusion, the study states that the adoption of LLMs in digital forensics, with appropriate constraints, has the potential to improve investigation efficiency, improve traceability, and alleviate the technical and judicial barriers faced by law enforcement entities.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
15.00%
发文量
87
审稿时长
76 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信