Epitaxial growth of nonlayered 2D MnTe nanosheets with thickness-tunable conduction for p-type field effect transistor and superior contact electrode

IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL
Mengfei He , Chao Chen , Yue Tang , Si Meng , Zunfa Wang , Liyu Wang , Jiabao Xing , Xinyu Zhang , Jiahui Huang , Jiangbo Lu , Hongmei Jing , Xiangyu Liu , Hua Xu
{"title":"Epitaxial growth of nonlayered 2D MnTe nanosheets with thickness-tunable conduction for p-type field effect transistor and superior contact electrode","authors":"Mengfei He ,&nbsp;Chao Chen ,&nbsp;Yue Tang ,&nbsp;Si Meng ,&nbsp;Zunfa Wang ,&nbsp;Liyu Wang ,&nbsp;Jiabao Xing ,&nbsp;Xinyu Zhang ,&nbsp;Jiahui Huang ,&nbsp;Jiangbo Lu ,&nbsp;Hongmei Jing ,&nbsp;Xiangyu Liu ,&nbsp;Hua Xu","doi":"10.3866/PKU.WHXB202310029","DOIUrl":null,"url":null,"abstract":"<div><div>Two-dimensional (2D) transition-metal dichalcogenides (TMDs) exhibit diverse structures, encompassing a broad spectrum of electronic types ranging from metal, semiconductor, to insulator and topological insulator. They hold immense potential for both Moore and more-than-Moore device applications. Among them, manganese telluride (MnTe), an emerging nonlayered 2D material, has garnered considerable attention due to its exceptional properties and significant application potential in next-generation electronic and optoelectronic devices. However, the controllable synthesis of ultra-thin 2D MnTe remains a great challenge, which hindering the comprehensive exploration of its fundamental properties and potential applications. In this study, we present the synthesis of large-area MnTe nanosheets through chemical vapor deposition growth, showcasing its thickness-dependent properties and device applications. By increasing the growth temperature from 500 to 750 ​°C, the MnTe nanosheets’ thickness transitions from thin-layer to a thick flake, the domain size increases from 10 to 125 ​μm, the morphology changes from triangle to hexagon, culminating in a highly symmetrical round shape. Structural characterization and second harmonic generation measurements reveal that the obtained MnTe nanosheets exhibit high crystallization quality and superior second-order optical nonlinearity. The field effect transistor (FET) constructed with thin-layer MnTe demonstrates a p-type semiconductor characteristic, transitioning to a semimetal feature as the thickness increases to a thick flake. Leveraging these thickness-dependent electrical conduction transition features, we explore diverse applications of MnTe with varying thicknesses. The semiconductive thin-layer MnTe, serving as the photosensitive channel in a device, achieves superior photoresponse, showcasing considerable potential for photodetection appliations. The semimetallic thick-layer MnTe, acting as the contact electrode in a MoS<sub>2</sub> FET, significantly enhances device performance, with carrier mobility increasing from 12.76 ​cm<sup>2</sup> ​V<sup>−1</sup> ​s<sup>−1</sup> (Au contact) to 47.34 ​cm<sup>2</sup> ​V<sup>−1</sup> ​s<sup>−1</sup> (MnTe contact). This work lays the foundation for the controllable synthesis of nonlayered 2D MnTe and provides insights into its prospective development for constructing innovative electronic and optoelectronic devices.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 2","pages":"Article 100016"},"PeriodicalIF":10.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100068182400016X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional (2D) transition-metal dichalcogenides (TMDs) exhibit diverse structures, encompassing a broad spectrum of electronic types ranging from metal, semiconductor, to insulator and topological insulator. They hold immense potential for both Moore and more-than-Moore device applications. Among them, manganese telluride (MnTe), an emerging nonlayered 2D material, has garnered considerable attention due to its exceptional properties and significant application potential in next-generation electronic and optoelectronic devices. However, the controllable synthesis of ultra-thin 2D MnTe remains a great challenge, which hindering the comprehensive exploration of its fundamental properties and potential applications. In this study, we present the synthesis of large-area MnTe nanosheets through chemical vapor deposition growth, showcasing its thickness-dependent properties and device applications. By increasing the growth temperature from 500 to 750 ​°C, the MnTe nanosheets’ thickness transitions from thin-layer to a thick flake, the domain size increases from 10 to 125 ​μm, the morphology changes from triangle to hexagon, culminating in a highly symmetrical round shape. Structural characterization and second harmonic generation measurements reveal that the obtained MnTe nanosheets exhibit high crystallization quality and superior second-order optical nonlinearity. The field effect transistor (FET) constructed with thin-layer MnTe demonstrates a p-type semiconductor characteristic, transitioning to a semimetal feature as the thickness increases to a thick flake. Leveraging these thickness-dependent electrical conduction transition features, we explore diverse applications of MnTe with varying thicknesses. The semiconductive thin-layer MnTe, serving as the photosensitive channel in a device, achieves superior photoresponse, showcasing considerable potential for photodetection appliations. The semimetallic thick-layer MnTe, acting as the contact electrode in a MoS2 FET, significantly enhances device performance, with carrier mobility increasing from 12.76 ​cm2 ​V−1 ​s−1 (Au contact) to 47.34 ​cm2 ​V−1 ​s−1 (MnTe contact). This work lays the foundation for the controllable synthesis of nonlayered 2D MnTe and provides insights into its prospective development for constructing innovative electronic and optoelectronic devices.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
物理化学学报
物理化学学报 化学-物理化学
CiteScore
16.60
自引率
5.50%
发文量
9754
审稿时长
1.2 months
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信