Effect of different reinforcement strategies in cap-pile regions on the lateral bearing performance of a broken wharf in waterway traffic

IF 4.9 2区 工程技术 Q1 ENGINEERING, CIVIL
Yue Yuan , Chunning Ji , Zhen Yan
{"title":"Effect of different reinforcement strategies in cap-pile regions on the lateral bearing performance of a broken wharf in waterway traffic","authors":"Yue Yuan ,&nbsp;Chunning Ji ,&nbsp;Zhen Yan","doi":"10.1016/j.trgeo.2025.101491","DOIUrl":null,"url":null,"abstract":"<div><div>The batter piles of a pile-supported wharf are severely damaged under excessive lateral loads, and effective reinforcement strategies are of great concern. In this paper, the effect of different reinforcement strategies on the lateral bearing performance of the wharf, taking into account the pile-soil interaction, was investigated using centrifuge test and numerical simulation. The results showed that both reinforcement strategies were effective in improving performance, with results generally aligning with those of the intact wharf in terms of load–displacement relationships, and significantly reduced the magnitudes of pile lateral deflection, soil pressure, bending moment, and shear force compared to the broken wharf. However, the concrete jacketing method resulted in larger lateral deflections in the middle sections of the retrofitted batter piles, and then abruptly reduced to match those of the steel-bonding method in the cap-pile regions. The degree of abrupt changes of bending moment in retrofitted batter piles was more distinct in the concrete jacketing wharf than that in the steel-bonding wharf. The steel-bonding method distributed the lateral load more evenly than the concrete jacketing, which involved more abrupt changes in shear forces. Overall, although the performance of both retrofitting methods was slightly better than that of the intact wharf at component level, the steel-bonding method appeared to prove superior due to the smaller change in stiffness and the more even distribution of lateral loads.</div></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":"51 ","pages":"Article 101491"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214391225000108","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The batter piles of a pile-supported wharf are severely damaged under excessive lateral loads, and effective reinforcement strategies are of great concern. In this paper, the effect of different reinforcement strategies on the lateral bearing performance of the wharf, taking into account the pile-soil interaction, was investigated using centrifuge test and numerical simulation. The results showed that both reinforcement strategies were effective in improving performance, with results generally aligning with those of the intact wharf in terms of load–displacement relationships, and significantly reduced the magnitudes of pile lateral deflection, soil pressure, bending moment, and shear force compared to the broken wharf. However, the concrete jacketing method resulted in larger lateral deflections in the middle sections of the retrofitted batter piles, and then abruptly reduced to match those of the steel-bonding method in the cap-pile regions. The degree of abrupt changes of bending moment in retrofitted batter piles was more distinct in the concrete jacketing wharf than that in the steel-bonding wharf. The steel-bonding method distributed the lateral load more evenly than the concrete jacketing, which involved more abrupt changes in shear forces. Overall, although the performance of both retrofitting methods was slightly better than that of the intact wharf at component level, the steel-bonding method appeared to prove superior due to the smaller change in stiffness and the more even distribution of lateral loads.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Transportation Geotechnics
Transportation Geotechnics Social Sciences-Transportation
CiteScore
8.10
自引率
11.30%
发文量
194
审稿时长
51 days
期刊介绍: Transportation Geotechnics is a journal dedicated to publishing high-quality, theoretical, and applied papers that cover all facets of geotechnics for transportation infrastructure such as roads, highways, railways, underground railways, airfields, and waterways. The journal places a special emphasis on case studies that present original work relevant to the sustainable construction of transportation infrastructure. The scope of topics it addresses includes the geotechnical properties of geomaterials for sustainable and rational design and construction, the behavior of compacted and stabilized geomaterials, the use of geosynthetics and reinforcement in constructed layers and interlayers, ground improvement and slope stability for transportation infrastructures, compaction technology and management, maintenance technology, the impact of climate, embankments for highways and high-speed trains, transition zones, dredging, underwater geotechnics for infrastructure purposes, and the modeling of multi-layered structures and supporting ground under dynamic and repeated loads.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信