KNNOR-Reg: A python package for oversampling in imbalanced regression

IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Samir Brahim Belhaouari , Ashhadul Islam , Khelil Kassoul , Ala Al-Fuqaha , Abdesselam Bouzerdoum
{"title":"KNNOR-Reg: A python package for oversampling in imbalanced regression","authors":"Samir Brahim Belhaouari ,&nbsp;Ashhadul Islam ,&nbsp;Khelil Kassoul ,&nbsp;Ala Al-Fuqaha ,&nbsp;Abdesselam Bouzerdoum","doi":"10.1016/j.simpa.2024.100740","DOIUrl":null,"url":null,"abstract":"<div><div>KNNOR-Reg is a Python package designed to address the challenge of imbalanced regression. While popular Python packages exist for tackling imbalanced classification, support for imbalanced regression remains limited. Imbalanced regression involves the underrepresentation of important ranges within a continuous target variable. KNNOR-Reg implements an oversampling technique that generates synthetic samples through interpolation between minority class samples and their nearest neighbors. The labels for synthetic samples are computed based on the inverse distance-weighted average of the nearest neighbors’ labels. KNNOR-Reg offers a user-friendly and extensible Python implementation for oversampling imbalanced regression data, aiming to reduce regressor bias and enhance model outcomes.</div></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"23 ","pages":"Article 100740"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963824001283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

KNNOR-Reg is a Python package designed to address the challenge of imbalanced regression. While popular Python packages exist for tackling imbalanced classification, support for imbalanced regression remains limited. Imbalanced regression involves the underrepresentation of important ranges within a continuous target variable. KNNOR-Reg implements an oversampling technique that generates synthetic samples through interpolation between minority class samples and their nearest neighbors. The labels for synthetic samples are computed based on the inverse distance-weighted average of the nearest neighbors’ labels. KNNOR-Reg offers a user-friendly and extensible Python implementation for oversampling imbalanced regression data, aiming to reduce regressor bias and enhance model outcomes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信