PEM-SMC: An algorithm for optimizing model parameters

IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Gaofeng Zhu , Qiang Chen , Xiangyu Yu , Cong Xu , Kun Zhang , Yunquan Wang , Wei Gong , Tao Che
{"title":"PEM-SMC: An algorithm for optimizing model parameters","authors":"Gaofeng Zhu ,&nbsp;Qiang Chen ,&nbsp;Xiangyu Yu ,&nbsp;Cong Xu ,&nbsp;Kun Zhang ,&nbsp;Yunquan Wang ,&nbsp;Wei Gong ,&nbsp;Tao Che","doi":"10.1016/j.simpa.2024.100728","DOIUrl":null,"url":null,"abstract":"<div><div>Bayesian inference is crucial for optimizing parameters in complex models, but often requires sampling due to high-dimensional, intractable posteriors. Beyond Markov-Chain Monte Carlo (MCMC) methods, Sequential Monte Carlo (SMC) algorithms offer an alternative. This paper introduces a Matlab toolbox for the Particle Evolution Metropolis Sequential Monte Carlo (PEM-SMC) algorithm, which combines the strengths of population-based MCMC and SMC. Two case studies – a complex multi-modal probability and a land surface model – demonstrate the toolbox’s capabilities. This tool is valuable for Bayesian inference across fields like statistics, ecology, hydrology, and land surface processes.</div></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"23 ","pages":"Article 100728"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963824001167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Bayesian inference is crucial for optimizing parameters in complex models, but often requires sampling due to high-dimensional, intractable posteriors. Beyond Markov-Chain Monte Carlo (MCMC) methods, Sequential Monte Carlo (SMC) algorithms offer an alternative. This paper introduces a Matlab toolbox for the Particle Evolution Metropolis Sequential Monte Carlo (PEM-SMC) algorithm, which combines the strengths of population-based MCMC and SMC. Two case studies – a complex multi-modal probability and a land surface model – demonstrate the toolbox’s capabilities. This tool is valuable for Bayesian inference across fields like statistics, ecology, hydrology, and land surface processes.
PEM-SMC:一种模型参数优化算法
贝叶斯推理对于复杂模型的参数优化至关重要,但由于高维、难以处理的后验,通常需要采样。除了马尔可夫链蒙特卡罗(MCMC)方法之外,顺序蒙特卡罗(SMC)算法提供了另一种选择。本文介绍了粒子进化大都市顺序蒙特卡罗(pemsmc)算法的Matlab工具箱,该算法结合了基于种群的MCMC和SMC的优点。两个案例研究——一个复杂的多模态概率和一个陆地表面模型——展示了工具箱的能力。这个工具对于跨领域的贝叶斯推理很有价值,如统计学、生态学、水文学和陆地表面过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信