SGML: A Python library for solution-guided machine learning

IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Ruijin Wang , Yuchen Du , Chunchun Dai , Yang Deng , Jiantao Leng , Tienchong Chang
{"title":"SGML: A Python library for solution-guided machine learning","authors":"Ruijin Wang ,&nbsp;Yuchen Du ,&nbsp;Chunchun Dai ,&nbsp;Yang Deng ,&nbsp;Jiantao Leng ,&nbsp;Tienchong Chang","doi":"10.1016/j.simpa.2024.100739","DOIUrl":null,"url":null,"abstract":"<div><div>Researchers have long been concerned with the extrapolation capabilities of machine learning (ML) models, particularly when dealing with insufficient training data. The recently proposed solution-guided machine learning (SGML) method addresses this issue by integrating existing solutions as additional features to supplement limited training data. We have applied this method to solve the strong nonlinearity in nanoindentation and present an approximate solution to the tangential entropic force in an asymmetrical two dimensional bilayer. To make this method more accessible, we developed a user-friendly Python library called SGML, available on GitHub and PyPI. This paper introduces the architecture and functionality of the library, provides a usage example, and discusses its potential impact and applications.</div></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"23 ","pages":"Article 100739"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963824001271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Researchers have long been concerned with the extrapolation capabilities of machine learning (ML) models, particularly when dealing with insufficient training data. The recently proposed solution-guided machine learning (SGML) method addresses this issue by integrating existing solutions as additional features to supplement limited training data. We have applied this method to solve the strong nonlinearity in nanoindentation and present an approximate solution to the tangential entropic force in an asymmetrical two dimensional bilayer. To make this method more accessible, we developed a user-friendly Python library called SGML, available on GitHub and PyPI. This paper introduces the architecture and functionality of the library, provides a usage example, and discusses its potential impact and applications.
SGML:用于解决方案引导机器学习的Python库
长期以来,研究人员一直关注机器学习(ML)模型的外推能力,特别是在处理训练数据不足的情况下。最近提出的解决方案引导机器学习(SGML)方法通过集成现有解决方案作为附加特征来补充有限的训练数据来解决这个问题。我们将该方法应用于求解纳米压痕中的强非线性问题,并给出了不对称二维双分子层中切向熵的近似解。为了使这种方法更容易使用,我们开发了一个用户友好的Python库SGML,可以在GitHub和PyPI上获得。本文介绍了该库的体系结构和功能,提供了一个使用示例,并讨论了它的潜在影响和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信