DeepPack3D: A Python package for online 3D bin packing optimization by deep reinforcement learning and constructive heuristics

IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Y.P. Tsang , D.Y. Mo , K.T. Chung , C.K.M. Lee
{"title":"DeepPack3D: A Python package for online 3D bin packing optimization by deep reinforcement learning and constructive heuristics","authors":"Y.P. Tsang ,&nbsp;D.Y. Mo ,&nbsp;K.T. Chung ,&nbsp;C.K.M. Lee","doi":"10.1016/j.simpa.2024.100732","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid advancement of industrial robotic automation has increased the significance of online 3D bin packing optimization for applications, like palletization and container loading. Despite numerous learning-based methods emerging for informed decision-making in this process, the absence of a standardized benchmark makes it challenging to experience the process and validate new algorithms. To bridge this gap, we introduce DeepPack3D, a software package that integrates deep reinforcement learning and constructive heuristic approaches for online 3D bin packing optimization. DeepPack3D provides a foundation for benchmarking, allowing users to evaluate performance using customizable item lists and lookahead values, thereby facilitating consistent research advancements.</div></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"23 ","pages":"Article 100732"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963824001209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid advancement of industrial robotic automation has increased the significance of online 3D bin packing optimization for applications, like palletization and container loading. Despite numerous learning-based methods emerging for informed decision-making in this process, the absence of a standardized benchmark makes it challenging to experience the process and validate new algorithms. To bridge this gap, we introduce DeepPack3D, a software package that integrates deep reinforcement learning and constructive heuristic approaches for online 3D bin packing optimization. DeepPack3D provides a foundation for benchmarking, allowing users to evaluate performance using customizable item lists and lookahead values, thereby facilitating consistent research advancements.
DeepPack3D:一个Python包,通过深度强化学习和建设性启发式进行在线3D装箱优化
工业机器人自动化的快速发展,增加了在线3D装箱优化应用的重要性,如托盘和集装箱装载。尽管在此过程中出现了许多基于学习的方法来进行明智的决策,但由于缺乏标准化的基准,因此很难体验该过程并验证新算法。为了弥补这一差距,我们引入了DeepPack3D,这是一个集成了深度强化学习和建设性启发式方法的软件包,用于在线3D装箱优化。DeepPack3D为基准测试提供了基础,允许用户使用可定制的项目列表和前瞻性值来评估性能,从而促进一致的研究进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信