INSNER: A generative instruction-based prompting method for boosting performance in few-shot NER

IF 7.4 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Peiwen Zhao , Chong Feng , Peiguang Li , Guanting Dong , Sirui Wang
{"title":"INSNER: A generative instruction-based prompting method for boosting performance in few-shot NER","authors":"Peiwen Zhao ,&nbsp;Chong Feng ,&nbsp;Peiguang Li ,&nbsp;Guanting Dong ,&nbsp;Sirui Wang","doi":"10.1016/j.ipm.2024.104040","DOIUrl":null,"url":null,"abstract":"<div><div>Most existing Named Entity Recognition (NER) methods require a large scale of labeled data and exhibit poor performance in low-resource scenarios. Thus in this paper, we propose INSNER, a generative INStruction-based prompting method for few-shot NER. Specifically, we introduce a unified instruction to guide the model in extracting correct entities in response to the instruction, and construct synthetic verbalizers, which support complex types, to encourage effective knowledge transfer. We organize the NER results in natural language form, which mitigates the gap between pre-training and fine-tuning of language models. Furthermore, to facilitate the model to learn task-related knowledge and rich label semantics, we introduce entity-oriented prompt-tuning as an auxiliary task. We conduct in-domain and cross-domain experiments in few-shot settings on 4 datasets, and extensive analyses to validate the effectiveness and generalization ability of INSNER. Experimental results demonstrate that INSNER significantly outperforms current methods in few-shot settings, especially huge improvements(+12.0% F1) over the powerful ChatGPT in MIT Movie Complex both under a 10-shot setting.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"62 3","pages":"Article 104040"},"PeriodicalIF":7.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457324003996","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Most existing Named Entity Recognition (NER) methods require a large scale of labeled data and exhibit poor performance in low-resource scenarios. Thus in this paper, we propose INSNER, a generative INStruction-based prompting method for few-shot NER. Specifically, we introduce a unified instruction to guide the model in extracting correct entities in response to the instruction, and construct synthetic verbalizers, which support complex types, to encourage effective knowledge transfer. We organize the NER results in natural language form, which mitigates the gap between pre-training and fine-tuning of language models. Furthermore, to facilitate the model to learn task-related knowledge and rich label semantics, we introduce entity-oriented prompt-tuning as an auxiliary task. We conduct in-domain and cross-domain experiments in few-shot settings on 4 datasets, and extensive analyses to validate the effectiveness and generalization ability of INSNER. Experimental results demonstrate that INSNER significantly outperforms current methods in few-shot settings, especially huge improvements(+12.0% F1) over the powerful ChatGPT in MIT Movie Complex both under a 10-shot setting.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信