{"title":"Adaptive Asymmetric Supervised Cross-Modal Hashing with consensus matrix","authors":"Yinan Li , Jun Long , Youyuan Huang , Zhan Yang","doi":"10.1016/j.ipm.2024.104037","DOIUrl":null,"url":null,"abstract":"<div><div>Supervised hashing has garnered considerable attention in cross-modal retrieval by programming annotated diverse modality data into the unified binary representation that facilitates efficient retrieval and lightweight storage. Despite its advantages, a major challenge remains, how to get the utmost out of annotated information and derive robust common representation that accurately preserves the intrinsic relations across heterogeneous modalities. In this paper, we present an innovative <strong>A</strong>daptive <strong>A</strong>symmetric <strong>S</strong>upervised <strong>C</strong>ross-modal <strong>H</strong>ashing method with consensus matrix to tackle the problem. We begin by formulating the proposition through matrix factorization to obtain the common representation utilizing consensus matrix efficiently. To safeguard the completeness of diverse modality data, we incorporate them via adaptive weight factors along with nuclear norms. Furthermore, an asymmetric hash learning framework between the representative coefficient matrices that come from common representation and semantic labels was constructed to constitute concentrated hash codes. Additionally, a valid discrete optimization algorithm was programmed. Comprehensive experiments conducted on MIRFlirck, NUS-WIDE, and IARP-TC12 datasets validate that <strong>A2SCH</strong> outperforms leading-edge hashing methods in cross-modal retrieval tasks.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"62 3","pages":"Article 104037"},"PeriodicalIF":7.4000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457324003960","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Supervised hashing has garnered considerable attention in cross-modal retrieval by programming annotated diverse modality data into the unified binary representation that facilitates efficient retrieval and lightweight storage. Despite its advantages, a major challenge remains, how to get the utmost out of annotated information and derive robust common representation that accurately preserves the intrinsic relations across heterogeneous modalities. In this paper, we present an innovative Adaptive Asymmetric Supervised Cross-modal Hashing method with consensus matrix to tackle the problem. We begin by formulating the proposition through matrix factorization to obtain the common representation utilizing consensus matrix efficiently. To safeguard the completeness of diverse modality data, we incorporate them via adaptive weight factors along with nuclear norms. Furthermore, an asymmetric hash learning framework between the representative coefficient matrices that come from common representation and semantic labels was constructed to constitute concentrated hash codes. Additionally, a valid discrete optimization algorithm was programmed. Comprehensive experiments conducted on MIRFlirck, NUS-WIDE, and IARP-TC12 datasets validate that A2SCH outperforms leading-edge hashing methods in cross-modal retrieval tasks.
期刊介绍:
Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing.
We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.