Correlation embedding semantic-enhanced hashing for multimedia retrieval

IF 4.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yunfei Chen , Yitian Long , Zhan Yang , Jun Long
{"title":"Correlation embedding semantic-enhanced hashing for multimedia retrieval","authors":"Yunfei Chen ,&nbsp;Yitian Long ,&nbsp;Zhan Yang ,&nbsp;Jun Long","doi":"10.1016/j.imavis.2025.105421","DOIUrl":null,"url":null,"abstract":"<div><div>Due to its feature extraction and information processing advantages, deep hashing has achieved significant success in multimedia retrieval. Currently, mainstream unsupervised multimedia hashing methods do not incorporate associative relationship information as part of the original features in generating hash codes, and their similarity measurements do not consider the transitivity of similarity. To address these challenges, we propose the Correlation Embedding Semantic-Enhanced Hashing (CESEH) for multimedia retrieval, which primarily consists of a semantic-enhanced similarity construction module and a correlation embedding hashing module. First, the semantic-enhanced similarity construction module generates a semantically enriched similarity matrix by thoroughly exploring similarity adjacency relationships and deep semantic associations within the original data. Next, the correlation embedding hashing module integrates semantic-enhanced similarity information with intra-modal semantic information, achieves precise correlation embedding and preserves semantic information integrity. Extensive experiments on three widely-used datasets demonstrate that the CESEH method outperforms state-of-the-art unsupervised hashing methods in both retrieval accuracy and robustness. The code is available at <span><span>https://github.com/YunfeiChenMY/CESEH</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"154 ","pages":"Article 105421"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885625000095","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Due to its feature extraction and information processing advantages, deep hashing has achieved significant success in multimedia retrieval. Currently, mainstream unsupervised multimedia hashing methods do not incorporate associative relationship information as part of the original features in generating hash codes, and their similarity measurements do not consider the transitivity of similarity. To address these challenges, we propose the Correlation Embedding Semantic-Enhanced Hashing (CESEH) for multimedia retrieval, which primarily consists of a semantic-enhanced similarity construction module and a correlation embedding hashing module. First, the semantic-enhanced similarity construction module generates a semantically enriched similarity matrix by thoroughly exploring similarity adjacency relationships and deep semantic associations within the original data. Next, the correlation embedding hashing module integrates semantic-enhanced similarity information with intra-modal semantic information, achieves precise correlation embedding and preserves semantic information integrity. Extensive experiments on three widely-used datasets demonstrate that the CESEH method outperforms state-of-the-art unsupervised hashing methods in both retrieval accuracy and robustness. The code is available at https://github.com/YunfeiChenMY/CESEH.
多媒体检索的关联嵌入语义增强哈希
由于其特征提取和信息处理的优势,深度哈希在多媒体检索中取得了显著的成功。目前主流的无监督多媒体哈希方法在生成哈希码时没有将关联关系信息作为原始特征的一部分,其相似度度量也没有考虑相似度的传递性。为了解决这些问题,我们提出了用于多媒体检索的关联嵌入语义增强哈希算法(CESEH),该算法主要由语义增强的相似性构建模块和关联嵌入哈希模块组成。首先,语义增强的相似度构建模块通过深入挖掘原始数据中的相似邻接关系和深度语义关联,生成语义丰富的相似度矩阵。其次,关联嵌入哈希模块将语义增强的相似度信息与模态内语义信息相结合,实现了精确的关联嵌入,保持了语义信息的完整性。在三个广泛使用的数据集上进行的大量实验表明,CESEH方法在检索精度和鲁棒性方面都优于最先进的无监督哈希方法。代码可在https://github.com/YunfeiChenMY/CESEH上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Image and Vision Computing
Image and Vision Computing 工程技术-工程:电子与电气
CiteScore
8.50
自引率
8.50%
发文量
143
审稿时长
7.8 months
期刊介绍: Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信