Advancing brain tumor segmentation and grading through integration of FusionNet and IBCO-based ALCResNet

IF 4.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Abbas Rehman , Gu Naijie , Asma Aldrees , Muhammad Umer , Abeer Hakeem , Shtwai Alsubai , Lucia Cascone
{"title":"Advancing brain tumor segmentation and grading through integration of FusionNet and IBCO-based ALCResNet","authors":"Abbas Rehman ,&nbsp;Gu Naijie ,&nbsp;Asma Aldrees ,&nbsp;Muhammad Umer ,&nbsp;Abeer Hakeem ,&nbsp;Shtwai Alsubai ,&nbsp;Lucia Cascone","doi":"10.1016/j.imavis.2025.105432","DOIUrl":null,"url":null,"abstract":"<div><div>Brain tumors represent a significant global health challenge, characterized by uncontrolled cerebral cell growth. The variability in size, shape, and anatomical positioning complicates computational classification, which is crucial for effective treatment planning. Accurate detection is essential, as even small diagnostic inaccuracies can significantly increase the mortality risk. Tumor grade stratification is also critical for automated diagnosis; however, current deep learning models often fall short in achieving the desired effectiveness. In this study, we propose an advanced approach that leverages cutting-edge deep learning techniques to improve early detection and tumor severity grading, facilitating automated diagnosis. Clinical bioinformatics datasets are used to source representative brain tumor images, which undergo pre-processing and data augmentation via a Generative Adversarial Network (GAN). The images are then classified using the Adaptive Layer Cascaded ResNet (ALCResNet) model, optimized with the Improved Border Collie Optimization (IBCO) algorithm for enhanced diagnostic accuracy. The integration of FusionNet for precise segmentation and the IBCO-enhanced ALCResNet for optimized feature extraction and classification forms a novel framework. This unique combination ensures not only accurate segmentation but also enhanced precision in grading tumor severity, addressing key limitations of existing methodologies. For segmentation, the FusionNet deep learning model is employed to identify abnormal regions, which are subsequently classified as Meningioma, Glioma, or Pituitary tumors using ALCResNet. Experimental results demonstrate significant improvements in tumor identification and severity grading, with the proposed method achieving superior precision (99.79%) and accuracy (99.33%) compared to existing classifiers and heuristic approaches.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"154 ","pages":"Article 105432"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885625000204","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Brain tumors represent a significant global health challenge, characterized by uncontrolled cerebral cell growth. The variability in size, shape, and anatomical positioning complicates computational classification, which is crucial for effective treatment planning. Accurate detection is essential, as even small diagnostic inaccuracies can significantly increase the mortality risk. Tumor grade stratification is also critical for automated diagnosis; however, current deep learning models often fall short in achieving the desired effectiveness. In this study, we propose an advanced approach that leverages cutting-edge deep learning techniques to improve early detection and tumor severity grading, facilitating automated diagnosis. Clinical bioinformatics datasets are used to source representative brain tumor images, which undergo pre-processing and data augmentation via a Generative Adversarial Network (GAN). The images are then classified using the Adaptive Layer Cascaded ResNet (ALCResNet) model, optimized with the Improved Border Collie Optimization (IBCO) algorithm for enhanced diagnostic accuracy. The integration of FusionNet for precise segmentation and the IBCO-enhanced ALCResNet for optimized feature extraction and classification forms a novel framework. This unique combination ensures not only accurate segmentation but also enhanced precision in grading tumor severity, addressing key limitations of existing methodologies. For segmentation, the FusionNet deep learning model is employed to identify abnormal regions, which are subsequently classified as Meningioma, Glioma, or Pituitary tumors using ALCResNet. Experimental results demonstrate significant improvements in tumor identification and severity grading, with the proposed method achieving superior precision (99.79%) and accuracy (99.33%) compared to existing classifiers and heuristic approaches.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Image and Vision Computing
Image and Vision Computing 工程技术-工程:电子与电气
CiteScore
8.50
自引率
8.50%
发文量
143
审稿时长
7.8 months
期刊介绍: Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信