Psycholinguistic knowledge-guided graph network for personality detection of silent users

IF 7.4 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Houjie Qiu , Xingkong Ma , Bo Liu , Yiqing Cai , Xinyi Chen , Zhaoyun Ding
{"title":"Psycholinguistic knowledge-guided graph network for personality detection of silent users","authors":"Houjie Qiu ,&nbsp;Xingkong Ma ,&nbsp;Bo Liu ,&nbsp;Yiqing Cai ,&nbsp;Xinyi Chen ,&nbsp;Zhaoyun Ding","doi":"10.1016/j.ipm.2025.104064","DOIUrl":null,"url":null,"abstract":"<div><div>Personality detection is an emerging task benefiting numerous fields. The existing studies on text-based personality detection rarely concern silent users who never publish social texts due to the lack of their posts. Simultaneously, the mainstream methods lack an effective pathway for silent user representation to detect the personality. To solve the silent user problems, we propose a psycholinguistic knowledge-guided graph network, <em>PKGN</em>. Our method is composed of neighbor post metric, graph initialization &amp; learning, and classification. Under the guidance of psychological knowledge, our model first selects high-quality posts from neighbors as the posts of silent users through the neighbor post metric. In the graph initialization &amp; learning, psychologically relevant categories are introduced to build the bipartite graph for each silent user and obtain the user representation via GATv2. Then, we utilize linear classifiers for personality classification. We conducted extensive experiments on a new real-world dataset, including 1581 samples. To conduct a baseline benchmark for the silent user personality detection task, we apply the neighbor post metric to combine with the existing work. From the experimental results, our model achieves 64.11% average accuracy and 63.21% average macro-F1, outperforming mainstream methods in most individual personality traits and comprehensive comparisons. Furthermore, the introduction of psycholinguistic knowledge benefits the model performance. In neighbor post metric comparison, the psycholinguistic knowledge from LIWC reduces the standard variances of psychological category count and improves the detection results (3.01% <span><math><mi>↑</mi></math></span> for average accuracy and 2.34% <span><math><mi>↑</mi></math></span> for average macro-F1). In the ablation study, all the psychologically relevant categories contribute to the model performance (ranging from 0.02% <span><math><mi>↑</mi></math></span> to 3.02% <span><math><mi>↑</mi></math></span> for average macro-F1).</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"62 3","pages":"Article 104064"},"PeriodicalIF":7.4000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457325000068","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Personality detection is an emerging task benefiting numerous fields. The existing studies on text-based personality detection rarely concern silent users who never publish social texts due to the lack of their posts. Simultaneously, the mainstream methods lack an effective pathway for silent user representation to detect the personality. To solve the silent user problems, we propose a psycholinguistic knowledge-guided graph network, PKGN. Our method is composed of neighbor post metric, graph initialization & learning, and classification. Under the guidance of psychological knowledge, our model first selects high-quality posts from neighbors as the posts of silent users through the neighbor post metric. In the graph initialization & learning, psychologically relevant categories are introduced to build the bipartite graph for each silent user and obtain the user representation via GATv2. Then, we utilize linear classifiers for personality classification. We conducted extensive experiments on a new real-world dataset, including 1581 samples. To conduct a baseline benchmark for the silent user personality detection task, we apply the neighbor post metric to combine with the existing work. From the experimental results, our model achieves 64.11% average accuracy and 63.21% average macro-F1, outperforming mainstream methods in most individual personality traits and comprehensive comparisons. Furthermore, the introduction of psycholinguistic knowledge benefits the model performance. In neighbor post metric comparison, the psycholinguistic knowledge from LIWC reduces the standard variances of psychological category count and improves the detection results (3.01% for average accuracy and 2.34% for average macro-F1). In the ablation study, all the psychologically relevant categories contribute to the model performance (ranging from 0.02% to 3.02% for average macro-F1).
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信