Jianpeng Zhou , Wanjun Zhong , Yanlin Wang , Jiahai Wang
{"title":"Adaptive-solver framework for dynamic strategy selection in large language model reasoning","authors":"Jianpeng Zhou , Wanjun Zhong , Yanlin Wang , Jiahai Wang","doi":"10.1016/j.ipm.2024.104052","DOIUrl":null,"url":null,"abstract":"<div><div>Large Language Models (LLMs) demonstrate impressive ability in handling reasoning tasks. However, unlike humans who can instinctively adapt their problem-solving strategies to the complexity of task, most LLM-based methods adopt a one-size-fits-all approach. These methods employ consistent models, sample sizes, prompting methods and levels of problem decomposition, regardless of the problem complexity. The inflexibility of these methods can bring unnecessary computational overhead or sub-optimal performance. To address this limitation, we introduce an Adaptive-Solver (AS) framework that dynamically adapts solving strategies to suit various problems, enabling the flexible allocation of test-time computational resources. The framework functions with two primary modules. The initial <em>evaluation</em> module assesses the reliability of the current solution using answer consistency. If the solution is deemed unreliable, the subsequent <em>adaptation</em> module comes into play. Within this module, various types of adaptation strategies are employed collaboratively. Through such dynamic and multi-faceted adaptations, our framework can help reduce computational consumption and improve performance. Experimental results from complex reasoning benchmarks reveal that our method can significantly reduce API costs (up to 85%) while maintaining original performance. Alternatively, it achieves up to 4.5% higher accuracy compared to the baselines at the same cost. The datasets and code are available at <span><span>https://github.com/john1226966735/Adaptive-Solver</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"62 3","pages":"Article 104052"},"PeriodicalIF":7.4000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457324004114","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Large Language Models (LLMs) demonstrate impressive ability in handling reasoning tasks. However, unlike humans who can instinctively adapt their problem-solving strategies to the complexity of task, most LLM-based methods adopt a one-size-fits-all approach. These methods employ consistent models, sample sizes, prompting methods and levels of problem decomposition, regardless of the problem complexity. The inflexibility of these methods can bring unnecessary computational overhead or sub-optimal performance. To address this limitation, we introduce an Adaptive-Solver (AS) framework that dynamically adapts solving strategies to suit various problems, enabling the flexible allocation of test-time computational resources. The framework functions with two primary modules. The initial evaluation module assesses the reliability of the current solution using answer consistency. If the solution is deemed unreliable, the subsequent adaptation module comes into play. Within this module, various types of adaptation strategies are employed collaboratively. Through such dynamic and multi-faceted adaptations, our framework can help reduce computational consumption and improve performance. Experimental results from complex reasoning benchmarks reveal that our method can significantly reduce API costs (up to 85%) while maintaining original performance. Alternatively, it achieves up to 4.5% higher accuracy compared to the baselines at the same cost. The datasets and code are available at https://github.com/john1226966735/Adaptive-Solver.
期刊介绍:
Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing.
We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.