{"title":"Combining association-rule-guided sequence augmentation with listwise contrastive learning for session-based recommendation","authors":"Xiangkui Lu , Jun Wu","doi":"10.1016/j.ipm.2024.103999","DOIUrl":null,"url":null,"abstract":"<div><div>Sequence augmentation based contrastive learning (SACL) plays a critical role in user behavior modeling towards sequential recommendation tasks. However, SACL cannot work well in the scenario of session-based recommendation (SBR), where the anonymous user behavior sequences (known as sessions) are very short (e.g., with no more than 5 interactions), making most augmentation techniques ineffective. In this paper, we propose a novel method named LCAA (<strong>L</strong>istwise <strong>C</strong>ontrastive learning with <strong>A</strong>ssociation-rule-based sequence <strong>A</strong>ugmentation), which lengthens the current session with association rules to create an augmented session, and then leverages a corresponding listwise contrastive loss to maximize the agreement of two recommendation lists generated from the original session and its augmentation. Remarkably, LCAA is a model-agnostic method that can be easily plugged into a wide range of existing SBR models towards better accuracy. To evaluate the effectiveness of LCAA, we implement it with five SBR models utilizing various deep learning techniques (NARM, STAMP, SRGNN, CORE, and ATTMIX) and then compare the performance of each SBR baseline with its LCAA-modified version. Extensive experiments on three datasets (Diginetica, Nowplaying, and Tmall) demonstrate that LCAA yields the average improvement of around 5% on the complete testing sets and around 3% on the short session testing sets in terms of HR and MRR metrics. The code is publicly available.<span><span><sup>1</sup></span></span></div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"62 3","pages":"Article 103999"},"PeriodicalIF":7.4000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457324003583","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Sequence augmentation based contrastive learning (SACL) plays a critical role in user behavior modeling towards sequential recommendation tasks. However, SACL cannot work well in the scenario of session-based recommendation (SBR), where the anonymous user behavior sequences (known as sessions) are very short (e.g., with no more than 5 interactions), making most augmentation techniques ineffective. In this paper, we propose a novel method named LCAA (Listwise Contrastive learning with Association-rule-based sequence Augmentation), which lengthens the current session with association rules to create an augmented session, and then leverages a corresponding listwise contrastive loss to maximize the agreement of two recommendation lists generated from the original session and its augmentation. Remarkably, LCAA is a model-agnostic method that can be easily plugged into a wide range of existing SBR models towards better accuracy. To evaluate the effectiveness of LCAA, we implement it with five SBR models utilizing various deep learning techniques (NARM, STAMP, SRGNN, CORE, and ATTMIX) and then compare the performance of each SBR baseline with its LCAA-modified version. Extensive experiments on three datasets (Diginetica, Nowplaying, and Tmall) demonstrate that LCAA yields the average improvement of around 5% on the complete testing sets and around 3% on the short session testing sets in terms of HR and MRR metrics. The code is publicly available.1
期刊介绍:
Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing.
We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.