Dun Lan , Chuanhou Sun , Xiangjun Dong , Ping Qiu , Yongshun Gong , Xinwang Liu , Philippe Fournier-Viger , Chengqi Zhang
{"title":"TK-RNSP: Efficient Top-K Repetitive Negative Sequential Pattern mining","authors":"Dun Lan , Chuanhou Sun , Xiangjun Dong , Ping Qiu , Yongshun Gong , Xinwang Liu , Philippe Fournier-Viger , Chengqi Zhang","doi":"10.1016/j.ipm.2025.104077","DOIUrl":null,"url":null,"abstract":"<div><div>Repetitive Negative Sequential Patterns (RNSPs) can provide critical insights into the importance of sequences. However, most current RNSP mining methods require users to set an appropriate support threshold to obtain the expected number of patterns, which is a very difficult task for the users without prior experience. To address this issue, we propose a new algorithm, TK-RNSP, to mine the Top-<span><math><mi>K</mi></math></span> RNSPs with the highest support, without the need to set a support threshold. In detail, we achieve a significant breakthrough by proposing a series of definitions that enable RNSP mining to satisfy anti-monotonicity. Then, we propose a bitmap-based Depth-First Backtracking Search (DFBS) strategy to decrease the heavy computational burden by increasing the speed of support calculation. Finally, we propose the algorithm TK-RNSP in an one-stage process, which can effectively reduce the generation of unnecessary patterns and improve computational efficiency comparing to those two-stage process algorithms. To the best of our knowledge, TK-RNSP is the first algorithm to mine Top-<span><math><mi>K</mi></math></span> RNSPs. Extensive experiments on eight datasets show that TK-RNSP has better flexibility and efficiency to mine Top-<span><math><mi>K</mi></math></span> RNSPs.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"62 3","pages":"Article 104077"},"PeriodicalIF":7.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457325000196","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Repetitive Negative Sequential Patterns (RNSPs) can provide critical insights into the importance of sequences. However, most current RNSP mining methods require users to set an appropriate support threshold to obtain the expected number of patterns, which is a very difficult task for the users without prior experience. To address this issue, we propose a new algorithm, TK-RNSP, to mine the Top- RNSPs with the highest support, without the need to set a support threshold. In detail, we achieve a significant breakthrough by proposing a series of definitions that enable RNSP mining to satisfy anti-monotonicity. Then, we propose a bitmap-based Depth-First Backtracking Search (DFBS) strategy to decrease the heavy computational burden by increasing the speed of support calculation. Finally, we propose the algorithm TK-RNSP in an one-stage process, which can effectively reduce the generation of unnecessary patterns and improve computational efficiency comparing to those two-stage process algorithms. To the best of our knowledge, TK-RNSP is the first algorithm to mine Top- RNSPs. Extensive experiments on eight datasets show that TK-RNSP has better flexibility and efficiency to mine Top- RNSPs.
期刊介绍:
Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing.
We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.