Self-ensembling for 3D point cloud domain adaptation

IF 4.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Qing Li , Xiaojiang Peng , Chuan Yan , Pan Gao , Qi Hao
{"title":"Self-ensembling for 3D point cloud domain adaptation","authors":"Qing Li ,&nbsp;Xiaojiang Peng ,&nbsp;Chuan Yan ,&nbsp;Pan Gao ,&nbsp;Qi Hao","doi":"10.1016/j.imavis.2024.105409","DOIUrl":null,"url":null,"abstract":"<div><div>Recently 3D point cloud learning has been a hot topic in computer vision and autonomous driving. Due to the fact that it is difficult to manually annotate a qualitative large-scale 3D point cloud dataset, unsupervised domain adaptation (UDA) is popular in 3D point cloud learning which aims to transfer the learned knowledge from the labeled source domain to the unlabeled target domain. Existing methods mainly resort to a deformation reconstruction in the target domain, leveraging the deformable invariance process for generalization and domain adaptation. In this paper, we propose a conceptually new yet simple method, termed as self-ensembling network (SEN) for domain generalization and adaptation. In SEN, we propose a soft classification loss on the source domain and a consistency loss on the target domain to stabilize the feature representations and to capture better invariance in the UDA task. In addition, we extend the pointmixup module on the target domain to increase the diversity of point clouds which further boosts cross domain generalization. Extensive experiments on several 3D point cloud UDA benchmarks show that our SEN outperforms the state-of-the-art methods on both classification and segmentation tasks.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"154 ","pages":"Article 105409"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885624005146","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Recently 3D point cloud learning has been a hot topic in computer vision and autonomous driving. Due to the fact that it is difficult to manually annotate a qualitative large-scale 3D point cloud dataset, unsupervised domain adaptation (UDA) is popular in 3D point cloud learning which aims to transfer the learned knowledge from the labeled source domain to the unlabeled target domain. Existing methods mainly resort to a deformation reconstruction in the target domain, leveraging the deformable invariance process for generalization and domain adaptation. In this paper, we propose a conceptually new yet simple method, termed as self-ensembling network (SEN) for domain generalization and adaptation. In SEN, we propose a soft classification loss on the source domain and a consistency loss on the target domain to stabilize the feature representations and to capture better invariance in the UDA task. In addition, we extend the pointmixup module on the target domain to increase the diversity of point clouds which further boosts cross domain generalization. Extensive experiments on several 3D point cloud UDA benchmarks show that our SEN outperforms the state-of-the-art methods on both classification and segmentation tasks.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Image and Vision Computing
Image and Vision Computing 工程技术-工程:电子与电气
CiteScore
8.50
自引率
8.50%
发文量
143
审稿时长
7.8 months
期刊介绍: Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信