ASRMF: Adaptive image super-resolution based on dynamic-parameter DNN with multi-feature prior

IF 3.4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhe Zhang, Ke Wang, Lan Cheng, Xinying Xu
{"title":"ASRMF: Adaptive image super-resolution based on dynamic-parameter DNN with multi-feature prior","authors":"Zhe Zhang,&nbsp;Ke Wang,&nbsp;Lan Cheng,&nbsp;Xinying Xu","doi":"10.1016/j.sigpro.2024.109880","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, single-image super-resolution has made great progress due to the vigorous development of deep learning, but still has challenges in texture recovery for images with complex scenes. To improve the texture recovery performance, we propose an adaptive image super-resolution method with multi-feature prior to model the diverse mapping relations from low resolution images to their high resolution counterparts. Experimental results show that the proposed method recovers more faithful and vivid textures than static methods and other adaptive methods based on single feature prior. The proposed dynamic module can be flexibly introduced to any static model and further improve its performance. Our code is available at: <span><span>https://github.com/zzsmg/ASRMF</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"231 ","pages":"Article 109880"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424005000","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, single-image super-resolution has made great progress due to the vigorous development of deep learning, but still has challenges in texture recovery for images with complex scenes. To improve the texture recovery performance, we propose an adaptive image super-resolution method with multi-feature prior to model the diverse mapping relations from low resolution images to their high resolution counterparts. Experimental results show that the proposed method recovers more faithful and vivid textures than static methods and other adaptive methods based on single feature prior. The proposed dynamic module can be flexibly introduced to any static model and further improve its performance. Our code is available at: https://github.com/zzsmg/ASRMF.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Signal Processing
Signal Processing 工程技术-工程:电子与电气
CiteScore
9.20
自引率
9.10%
发文量
309
审稿时长
41 days
期刊介绍: Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing. Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信