Enhancing weakly supervised semantic segmentation with efficient and robust neighbor-attentive superpixel aggregation

IF 4.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Chen Wang , Huifang Ma , Di Zhang , Xiaolong Li , Zhixin Li
{"title":"Enhancing weakly supervised semantic segmentation with efficient and robust neighbor-attentive superpixel aggregation","authors":"Chen Wang ,&nbsp;Huifang Ma ,&nbsp;Di Zhang ,&nbsp;Xiaolong Li ,&nbsp;Zhixin Li","doi":"10.1016/j.imavis.2024.105391","DOIUrl":null,"url":null,"abstract":"<div><div>Image-level Weakly-Supervised Semantic Segmentation (WSSS) has become prominent as a technique that utilizes readily available image-level supervisory information. However, traditional methods that rely on pseudo-segmentation labels derived from Class Activation Maps (CAMs) are limited in terms of segmentation accuracy, primarily due to the incomplete nature of CAMs. Despite recent advancements in improving the comprehensiveness of CAM-derived pseudo-labels, challenges persist in handling ambiguity at object boundaries, and these methods also tend to be computationally intensive. To address these challenges, we propose a novel framework called Neighbor-Attentive Superpixel Aggregation (NASA). Inspired by the effectiveness of superpixel segmentation in homogenizing images through color and texture analysis, NASA enables the transformation from superpixel-wise to pixel-wise pseudo-labels. This approach significantly reduces semantic uncertainty at object boundaries and alleviates the computational overhead associated with direct pixel-wise label generation from CAMs. Besides, we introduce a superpixel augmentation strategy to enhance the model’s discrimination capabilities across different superpixels. Empirical studies demonstrate the superiority of NASA over existing WSSS methodologies. On the PASCAL VOC 2012 and MS COCO 2014 datasets, NASA achieves impressive mIoU scores of 73.5% and 46.4%, respectively.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"154 ","pages":"Article 105391"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885624004967","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Image-level Weakly-Supervised Semantic Segmentation (WSSS) has become prominent as a technique that utilizes readily available image-level supervisory information. However, traditional methods that rely on pseudo-segmentation labels derived from Class Activation Maps (CAMs) are limited in terms of segmentation accuracy, primarily due to the incomplete nature of CAMs. Despite recent advancements in improving the comprehensiveness of CAM-derived pseudo-labels, challenges persist in handling ambiguity at object boundaries, and these methods also tend to be computationally intensive. To address these challenges, we propose a novel framework called Neighbor-Attentive Superpixel Aggregation (NASA). Inspired by the effectiveness of superpixel segmentation in homogenizing images through color and texture analysis, NASA enables the transformation from superpixel-wise to pixel-wise pseudo-labels. This approach significantly reduces semantic uncertainty at object boundaries and alleviates the computational overhead associated with direct pixel-wise label generation from CAMs. Besides, we introduce a superpixel augmentation strategy to enhance the model’s discrimination capabilities across different superpixels. Empirical studies demonstrate the superiority of NASA over existing WSSS methodologies. On the PASCAL VOC 2012 and MS COCO 2014 datasets, NASA achieves impressive mIoU scores of 73.5% and 46.4%, respectively.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Image and Vision Computing
Image and Vision Computing 工程技术-工程:电子与电气
CiteScore
8.50
自引率
8.50%
发文量
143
审稿时长
7.8 months
期刊介绍: Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信