Dual multi scale networks for medical image segmentation using contrastive learning

IF 4.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Akshat Dhamale , Ratnavel Rajalakshmi , Ananthakrishnan Balasundaram
{"title":"Dual multi scale networks for medical image segmentation using contrastive learning","authors":"Akshat Dhamale ,&nbsp;Ratnavel Rajalakshmi ,&nbsp;Ananthakrishnan Balasundaram","doi":"10.1016/j.imavis.2024.105371","DOIUrl":null,"url":null,"abstract":"<div><div>DMSNet, a novel model for medical image segmentation is proposed in this research work. DMSNet employs a dual multi-scale architecture, combining the computational efficiency of EfficientNet B5 with the contextual understanding of the Pyramid Vision Transformer (PVT). Integration of a multi-scale module in both encoders enhances the model's capacity to capture intricate details across various resolutions, enabling precise delineation of complex foreground boundaries. Notably, DMSNet incorporates contrastive learning with a novel pixel-wise contrastive loss function during training, contributing to heightened segmentation accuracy and improved generalization capabilities. The model's performance is demonstrated through experimental evaluation on the four diverse datasets including Brain tumor segmentation (BraTS 2020), Diabetic Foot ulcer segmentation (DFU), Polyps (KVASIR-SEG) and Breast cancer segmentation (BCSS). We have employed recently introduced metrics to evaluate and compare our model with other state-of-the-art architectures. By advancing segmentation accuracy through innovative architectural design, multi-scale modules, and contrastive learning techniques, DMSNet represents a significant stride in the field, with potential implications for improved patient care and outcomes.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"154 ","pages":"Article 105371"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885624004761","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

DMSNet, a novel model for medical image segmentation is proposed in this research work. DMSNet employs a dual multi-scale architecture, combining the computational efficiency of EfficientNet B5 with the contextual understanding of the Pyramid Vision Transformer (PVT). Integration of a multi-scale module in both encoders enhances the model's capacity to capture intricate details across various resolutions, enabling precise delineation of complex foreground boundaries. Notably, DMSNet incorporates contrastive learning with a novel pixel-wise contrastive loss function during training, contributing to heightened segmentation accuracy and improved generalization capabilities. The model's performance is demonstrated through experimental evaluation on the four diverse datasets including Brain tumor segmentation (BraTS 2020), Diabetic Foot ulcer segmentation (DFU), Polyps (KVASIR-SEG) and Breast cancer segmentation (BCSS). We have employed recently introduced metrics to evaluate and compare our model with other state-of-the-art architectures. By advancing segmentation accuracy through innovative architectural design, multi-scale modules, and contrastive learning techniques, DMSNet represents a significant stride in the field, with potential implications for improved patient care and outcomes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Image and Vision Computing
Image and Vision Computing 工程技术-工程:电子与电气
CiteScore
8.50
自引率
8.50%
发文量
143
审稿时长
7.8 months
期刊介绍: Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信