A temporally-aware noise-informed invertible network for progressive video denoising

IF 4.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yan Huang , Huixin Luo , Yong Xu , Xian-Bing Meng
{"title":"A temporally-aware noise-informed invertible network for progressive video denoising","authors":"Yan Huang ,&nbsp;Huixin Luo ,&nbsp;Yong Xu ,&nbsp;Xian-Bing Meng","doi":"10.1016/j.imavis.2024.105369","DOIUrl":null,"url":null,"abstract":"<div><div>Video denoising is a critical task in computer vision, aiming to enhance video quality by removing noise from consecutive video frames. Despite significant progress, existing video denoising methods still suffer from challenges in maintaining temporal consistency and adapting to different noise levels. To address these issues, a temporally-aware and noise-informed invertible network is proposed by following divide-and-conquer principle for progressive video denoising. Specifically, a recurrent attention-based reversible network is designed to distinctly extract temporal information from consecutive frames, thus tackling the learning problem of temporal consistency. Simultaneously, a noise-informed two-way dense block is developed by using estimated noise as conditional guidance to adapt to different noise levels. The noise-informed guidance can then be used to guide the learning of dense block for efficient video denoising. Under the framework of invertible network, the designed two parts can be further integrated to achieve invertible learning to enable progressive video denoising. Experiments and comparative studies demonstrate that our method can achieve good denoising accuracy and fast inference speed in both synthetic scenes and real-world applications.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"154 ","pages":"Article 105369"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885624004748","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Video denoising is a critical task in computer vision, aiming to enhance video quality by removing noise from consecutive video frames. Despite significant progress, existing video denoising methods still suffer from challenges in maintaining temporal consistency and adapting to different noise levels. To address these issues, a temporally-aware and noise-informed invertible network is proposed by following divide-and-conquer principle for progressive video denoising. Specifically, a recurrent attention-based reversible network is designed to distinctly extract temporal information from consecutive frames, thus tackling the learning problem of temporal consistency. Simultaneously, a noise-informed two-way dense block is developed by using estimated noise as conditional guidance to adapt to different noise levels. The noise-informed guidance can then be used to guide the learning of dense block for efficient video denoising. Under the framework of invertible network, the designed two parts can be further integrated to achieve invertible learning to enable progressive video denoising. Experiments and comparative studies demonstrate that our method can achieve good denoising accuracy and fast inference speed in both synthetic scenes and real-world applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Image and Vision Computing
Image and Vision Computing 工程技术-工程:电子与电气
CiteScore
8.50
自引率
8.50%
发文量
143
审稿时长
7.8 months
期刊介绍: Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信