A dynamic optimization model for vaccine allocation with age considerations: A study inspired by the COVID-19 pandemic

IF 9.8 1区 工程技术 Q1 ENGINEERING, INDUSTRIAL
Amir Pirayesh , Alireza Asadaraghi , Mehrdad Mohammadi , Ali Siadat , Olga Battaïa
{"title":"A dynamic optimization model for vaccine allocation with age considerations: A study inspired by the COVID-19 pandemic","authors":"Amir Pirayesh ,&nbsp;Alireza Asadaraghi ,&nbsp;Mehrdad Mohammadi ,&nbsp;Ali Siadat ,&nbsp;Olga Battaïa","doi":"10.1016/j.ijpe.2024.109474","DOIUrl":null,"url":null,"abstract":"<div><div>In a pandemic situation, an effective vaccination campaign is seen as a powerful tool to prevent the spread of infectious diseases and reduce fatalities. However, its success highly depends on its organization and combination with other measures. To help the decision-makers in this endeavor, this paper proposes a Mixed-Integer Linear Programming - Vaccine Allocation (MILP-VA) model to plan the vaccination campaign to minimize the number of possible fatalities over a given period. To better integrate the pandemic dynamics, this model is coupled with a single-dose Susceptible-Vaccinated-Infected-Recovered (SVIR) model where the compartmentalization of the population allows for the adjustment of different demographic and epidemiological parameters based on age categories and their social interactions. This approach is proven to suit populations with heterogeneous age groups better. The applicability of the proposed SVIR-MILP-VA model is illustrated using a case study inspired by the COVID-19 pandemic. Accordingly, an extensive numerical analysis was conducted to test various managerial, epidemiological, and behavioral conditions, such as vaccine availability, transmission rates, and vaccine hesitancy. This approach facilitates robust discussions to address the uncertainties of an emerging pandemic and provides a solid foundation for informed vaccination decisions in real-world settings. The results are discussed, and the findings are formulated as insights for researchers and practitioners.</div></div>","PeriodicalId":14287,"journal":{"name":"International Journal of Production Economics","volume":"280 ","pages":"Article 109474"},"PeriodicalIF":9.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Production Economics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925527324003311","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

In a pandemic situation, an effective vaccination campaign is seen as a powerful tool to prevent the spread of infectious diseases and reduce fatalities. However, its success highly depends on its organization and combination with other measures. To help the decision-makers in this endeavor, this paper proposes a Mixed-Integer Linear Programming - Vaccine Allocation (MILP-VA) model to plan the vaccination campaign to minimize the number of possible fatalities over a given period. To better integrate the pandemic dynamics, this model is coupled with a single-dose Susceptible-Vaccinated-Infected-Recovered (SVIR) model where the compartmentalization of the population allows for the adjustment of different demographic and epidemiological parameters based on age categories and their social interactions. This approach is proven to suit populations with heterogeneous age groups better. The applicability of the proposed SVIR-MILP-VA model is illustrated using a case study inspired by the COVID-19 pandemic. Accordingly, an extensive numerical analysis was conducted to test various managerial, epidemiological, and behavioral conditions, such as vaccine availability, transmission rates, and vaccine hesitancy. This approach facilitates robust discussions to address the uncertainties of an emerging pandemic and provides a solid foundation for informed vaccination decisions in real-world settings. The results are discussed, and the findings are formulated as insights for researchers and practitioners.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Production Economics
International Journal of Production Economics 管理科学-工程:工业
CiteScore
21.40
自引率
7.50%
发文量
266
审稿时长
52 days
期刊介绍: The International Journal of Production Economics focuses on the interface between engineering and management. It covers all aspects of manufacturing and process industries, as well as production in general. The journal is interdisciplinary, considering activities throughout the product life cycle and material flow cycle. It aims to disseminate knowledge for improving industrial practice and strengthening the theoretical base for decision making. The journal serves as a forum for exchanging ideas and presenting new developments in theory and application, combining academic standards with practical value for industrial applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信