Gaussian dependence structure pairwise goodness-of-fit testing based on conditional covariance and the 20/60/20 rule

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Jakub Woźny , Piotr Jaworski , Damian Jelito , Marcin Pitera , Agnieszka Wyłomańska
{"title":"Gaussian dependence structure pairwise goodness-of-fit testing based on conditional covariance and the 20/60/20 rule","authors":"Jakub Woźny ,&nbsp;Piotr Jaworski ,&nbsp;Damian Jelito ,&nbsp;Marcin Pitera ,&nbsp;Agnieszka Wyłomańska","doi":"10.1016/j.jmva.2024.105396","DOIUrl":null,"url":null,"abstract":"<div><div>We present a novel data-oriented statistical framework that assesses the presumed Gaussian dependence structure in a pairwise setting. This refers to both multivariate normality and normal copula goodness-of-fit testing. The proposed test clusters the data according to the 20/60/20 rule and confronts conditional covariance (or correlation) estimates on the obtained subsets. The corresponding test statistic has a natural practical interpretation, desirable statistical properties, and asymptotic pivotal distribution under the multivariate normality assumption. We illustrate the usefulness of the introduced framework using extensive power simulation studies and show that our approach outperforms popular benchmark alternatives. Also, we apply the proposed methodology to exemplary commodity and equity market data.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"206 ","pages":"Article 105396"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24001039","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We present a novel data-oriented statistical framework that assesses the presumed Gaussian dependence structure in a pairwise setting. This refers to both multivariate normality and normal copula goodness-of-fit testing. The proposed test clusters the data according to the 20/60/20 rule and confronts conditional covariance (or correlation) estimates on the obtained subsets. The corresponding test statistic has a natural practical interpretation, desirable statistical properties, and asymptotic pivotal distribution under the multivariate normality assumption. We illustrate the usefulness of the introduced framework using extensive power simulation studies and show that our approach outperforms popular benchmark alternatives. Also, we apply the proposed methodology to exemplary commodity and equity market data.
基于条件协方差和20/60/20规则的高斯依赖结构配对拟合优度检验
我们提出了一个新的面向数据的统计框架,在两两设置中评估假定的高斯依赖结构。这指的是多元正态性和正态联结拟合优度检验。提出的测试根据20/60/20规则对数据进行聚类,并对获得的子集进行条件协方差(或相关性)估计。相应的检验统计量在多元正态性假设下具有自然的实用解释、理想的统计性质和渐近的枢纽分布。我们使用广泛的功率仿真研究来说明所引入框架的实用性,并表明我们的方法优于流行的基准替代方案。此外,我们将提出的方法应用于典型的商品和股票市场数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信