Crustal reworking during the transition of tectonic regime in the Paleoproterozoic Era: Constraints from geochemistry, Sm-Nd isotope and U-Pb geochronology of granitic gneisses, Dudhi Granitoid Complex, Mahakoshal belt, Central Indian Tectonic Zone (CITZ), India
Mahendra Shukla , Sanjeet K. Verma , Vivek P. Malviya , Elson P. Oliveira , Sumit Mishra , Ravi K. Umrao , Satya Prakash , Erik Emmanuel M. Torres
{"title":"Crustal reworking during the transition of tectonic regime in the Paleoproterozoic Era: Constraints from geochemistry, Sm-Nd isotope and U-Pb geochronology of granitic gneisses, Dudhi Granitoid Complex, Mahakoshal belt, Central Indian Tectonic Zone (CITZ), India","authors":"Mahendra Shukla , Sanjeet K. Verma , Vivek P. Malviya , Elson P. Oliveira , Sumit Mishra , Ravi K. Umrao , Satya Prakash , Erik Emmanuel M. Torres","doi":"10.1016/j.precamres.2024.107660","DOIUrl":null,"url":null,"abstract":"<div><div>The Paleoproterozoic Dudhi Granitoid Complex is composed of numerous granitoid intrusions and gneissic components that is located in the Mahakoshal belt, which is an important supracrustal belt of the Central Indian Tectonic Zone (CITZ) and played a vital role in the crustal accretion of the Columbia supercontinent. Thus, we present new geochemical data, Sm-Nd isotope analyses, and U-Pb geochronology of the granitic gneisses from the Dudhi Granitoid Complex to understand their origin, evolution and tectonic setting. The LA-ICP-MS zircon U-Pb dating yields ages of 1707.9 ± 7.4 Ma, 1724.3 ± 8.6 Ma, 1736.8 ± 9.9 Ma, 1748.3 ± 7.9 Ma, and 1756.3 ± 10 Ma for studied granitic gneisses. These rocks are strongly metaluminous and show enrichment in high field strength elements (HFSE) and depletion in large ion lithophile elements (LILE). The trace element composition allows classifying these rocks as an A<sub>2</sub>-type affinity in an extensional environment. They show negative values of ɛNd(t) (−5.7 to −0.4) and old Nd-model ages (T<sub>DM</sub>: 2068–2420) support their crustal origin. Geochemical and Nd isotope data indicate that they were derived by partial melting of older granites and granitic gneisses crust i.e., Archean Bundelkhand crust and Paleoproterozoic (>1.9 Ga) juvenile crustal basement of the Mahakoshal basin. Finally, their magmatism during 1.75–1.70 Ga is linked to the transition period of accretion and dispersal of the Columbia supercontinent, which is incorporated into the lithosphere of the CITZ.</div></div>","PeriodicalId":49674,"journal":{"name":"Precambrian Research","volume":"417 ","pages":"Article 107660"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precambrian Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301926824003735","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Paleoproterozoic Dudhi Granitoid Complex is composed of numerous granitoid intrusions and gneissic components that is located in the Mahakoshal belt, which is an important supracrustal belt of the Central Indian Tectonic Zone (CITZ) and played a vital role in the crustal accretion of the Columbia supercontinent. Thus, we present new geochemical data, Sm-Nd isotope analyses, and U-Pb geochronology of the granitic gneisses from the Dudhi Granitoid Complex to understand their origin, evolution and tectonic setting. The LA-ICP-MS zircon U-Pb dating yields ages of 1707.9 ± 7.4 Ma, 1724.3 ± 8.6 Ma, 1736.8 ± 9.9 Ma, 1748.3 ± 7.9 Ma, and 1756.3 ± 10 Ma for studied granitic gneisses. These rocks are strongly metaluminous and show enrichment in high field strength elements (HFSE) and depletion in large ion lithophile elements (LILE). The trace element composition allows classifying these rocks as an A2-type affinity in an extensional environment. They show negative values of ɛNd(t) (−5.7 to −0.4) and old Nd-model ages (TDM: 2068–2420) support their crustal origin. Geochemical and Nd isotope data indicate that they were derived by partial melting of older granites and granitic gneisses crust i.e., Archean Bundelkhand crust and Paleoproterozoic (>1.9 Ga) juvenile crustal basement of the Mahakoshal basin. Finally, their magmatism during 1.75–1.70 Ga is linked to the transition period of accretion and dispersal of the Columbia supercontinent, which is incorporated into the lithosphere of the CITZ.
期刊介绍:
Precambrian Research publishes studies on all aspects of the early stages of the composition, structure and evolution of the Earth and its planetary neighbours. With a focus on process-oriented and comparative studies, it covers, but is not restricted to, subjects such as:
(1) Chemical, biological, biochemical and cosmochemical evolution; the origin of life; the evolution of the oceans and atmosphere; the early fossil record; palaeobiology;
(2) Geochronology and isotope and elemental geochemistry;
(3) Precambrian mineral deposits;
(4) Geophysical aspects of the early Earth and Precambrian terrains;
(5) Nature, formation and evolution of the Precambrian lithosphere and mantle including magmatic, depositional, metamorphic and tectonic processes.
In addition, the editors particularly welcome integrated process-oriented studies that involve a combination of the above fields and comparative studies that demonstrate the effect of Precambrian evolution on Phanerozoic earth system processes.
Regional and localised studies of Precambrian phenomena are considered appropriate only when the detail and quality allow illustration of a wider process, or when significant gaps in basic knowledge of a particular area can be filled.