Plant trait retrieval from hyperspectral data: Collective efforts in scientific data curation outperform simulated data derived from the PROSAIL model

Daniel Mederer , Hannes Feilhauer , Eya Cherif , Katja Berger , Tobias B. Hank , Kyle R. Kovach , Phuong D. Dao , Bing Lu , Philip A. Townsend , Teja Kattenborn
{"title":"Plant trait retrieval from hyperspectral data: Collective efforts in scientific data curation outperform simulated data derived from the PROSAIL model","authors":"Daniel Mederer ,&nbsp;Hannes Feilhauer ,&nbsp;Eya Cherif ,&nbsp;Katja Berger ,&nbsp;Tobias B. Hank ,&nbsp;Kyle R. Kovach ,&nbsp;Phuong D. Dao ,&nbsp;Bing Lu ,&nbsp;Philip A. Townsend ,&nbsp;Teja Kattenborn","doi":"10.1016/j.ophoto.2024.100080","DOIUrl":null,"url":null,"abstract":"<div><div>Plant traits play a pivotal role in steering ecosystem dynamics. As plant canopies have evolved to interact with light, spectral data convey information on a variety of plant traits. Machine learning techniques have been used successfully to retrieve diverse traits from hyperspectral data. Nonetheless, the efficacy of machine learning is restricted by limited access to high-quality reference data for training. Previous studies showed that aggregating data across domains, sensors, or growth forms provided by collaborative efforts of the scientific community enables the creation of transferable models. However, even such curated databases are still sparse for several traits. To address these challenges, we investigated the potential of filling such data gaps with simulated hyperspectral data generated through the most widely-used radiative transfer model (RTM) PROSAIL. We coupled trait information from the TRY plant trait database with information on plant communities from the sPlot database, to build a realistic input trait dataset for the RTM-based simulation of canopy spectra. Our findings indicate that simulated data can alleviate the effects of data scarcity for highly underrepresented traits. In most other cases, however, the effects of including simulated data from RTMs are negligible or even negative. While more complex RTM models promise further improvements, their parameterization remains challenging. This highlights two key observations: firstly, RTM models, such as PROSAIL, exhibit limitations in producing realistic spectra across diverse ecosystems; secondly, real-world data repurposed from various sources exhibit superior retrieval success compared to simulated data. As a result, we advocate to emphasize the importance of active data sharing over secrecy and overreliance on modeling to address data limitations.</div></div>","PeriodicalId":100730,"journal":{"name":"ISPRS Open Journal of Photogrammetry and Remote Sensing","volume":"15 ","pages":"Article 100080"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Open Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667393224000243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Plant traits play a pivotal role in steering ecosystem dynamics. As plant canopies have evolved to interact with light, spectral data convey information on a variety of plant traits. Machine learning techniques have been used successfully to retrieve diverse traits from hyperspectral data. Nonetheless, the efficacy of machine learning is restricted by limited access to high-quality reference data for training. Previous studies showed that aggregating data across domains, sensors, or growth forms provided by collaborative efforts of the scientific community enables the creation of transferable models. However, even such curated databases are still sparse for several traits. To address these challenges, we investigated the potential of filling such data gaps with simulated hyperspectral data generated through the most widely-used radiative transfer model (RTM) PROSAIL. We coupled trait information from the TRY plant trait database with information on plant communities from the sPlot database, to build a realistic input trait dataset for the RTM-based simulation of canopy spectra. Our findings indicate that simulated data can alleviate the effects of data scarcity for highly underrepresented traits. In most other cases, however, the effects of including simulated data from RTMs are negligible or even negative. While more complex RTM models promise further improvements, their parameterization remains challenging. This highlights two key observations: firstly, RTM models, such as PROSAIL, exhibit limitations in producing realistic spectra across diverse ecosystems; secondly, real-world data repurposed from various sources exhibit superior retrieval success compared to simulated data. As a result, we advocate to emphasize the importance of active data sharing over secrecy and overreliance on modeling to address data limitations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信