A new unified framework for supervised 3D crown segmentation (TreeisoNet) using deep neural networks across airborne, UAV-borne, and terrestrial laser scans

Zhouxin Xi, Dani Degenhardt
{"title":"A new unified framework for supervised 3D crown segmentation (TreeisoNet) using deep neural networks across airborne, UAV-borne, and terrestrial laser scans","authors":"Zhouxin Xi,&nbsp;Dani Degenhardt","doi":"10.1016/j.ophoto.2025.100083","DOIUrl":null,"url":null,"abstract":"<div><div>Accurately defining and isolating 3D tree space is critical for extracting and analyzing tree inventory attributes, yet it remains a challenge due to the structural complexity and heterogeneity within natural forests. This study introduces TreeisoNet, a suite of supervised deep neural networks tailored for robust 3D tree segmentation across natural forest environments. These networks are specifically designed to identify tree locations, stem components (if available), and crown clusters, making them adaptable to varying scales of laser scanning from airborne laser scannner (ALS), terrestrial laser scanner (TLS), and unmanned aerial vehicle (UAV). Our evaluation used three benchmark datasets with manually isolated tree references, achieving mean intersection-over-union (mIoU) accuracies of 0.81 for UAV, 0.76 for TLS, and 0.59 for ALS, which are competitive with contemporary algorithms such as ForAINet, Treeiso, Mask R-CNN, and AMS3D. Noise from stem point delineation minimally impacted stem location detection but significantly affected crown clustering. Moderate manual refinement of stem points or tree centers significantly improved tree segmentation accuracies, achieving 0.85 for UAV, 0.86 for TLS, and 0.80 for ALS. The study confirms SegFormer as an effective 3D point-level classifier and an offset-based UNet as a superior segmenter, with the latter outperforming unsupervised solutions like watershed and shortest-path methods. TreeisoNet demonstrates strong adaptability in capturing invariant tree geometry features, ensuring transferability across different resolutions, sites, and sensors with minimal accuracy loss.</div></div>","PeriodicalId":100730,"journal":{"name":"ISPRS Open Journal of Photogrammetry and Remote Sensing","volume":"15 ","pages":"Article 100083"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Open Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266739322500002X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately defining and isolating 3D tree space is critical for extracting and analyzing tree inventory attributes, yet it remains a challenge due to the structural complexity and heterogeneity within natural forests. This study introduces TreeisoNet, a suite of supervised deep neural networks tailored for robust 3D tree segmentation across natural forest environments. These networks are specifically designed to identify tree locations, stem components (if available), and crown clusters, making them adaptable to varying scales of laser scanning from airborne laser scannner (ALS), terrestrial laser scanner (TLS), and unmanned aerial vehicle (UAV). Our evaluation used three benchmark datasets with manually isolated tree references, achieving mean intersection-over-union (mIoU) accuracies of 0.81 for UAV, 0.76 for TLS, and 0.59 for ALS, which are competitive with contemporary algorithms such as ForAINet, Treeiso, Mask R-CNN, and AMS3D. Noise from stem point delineation minimally impacted stem location detection but significantly affected crown clustering. Moderate manual refinement of stem points or tree centers significantly improved tree segmentation accuracies, achieving 0.85 for UAV, 0.86 for TLS, and 0.80 for ALS. The study confirms SegFormer as an effective 3D point-level classifier and an offset-based UNet as a superior segmenter, with the latter outperforming unsupervised solutions like watershed and shortest-path methods. TreeisoNet demonstrates strong adaptability in capturing invariant tree geometry features, ensuring transferability across different resolutions, sites, and sensors with minimal accuracy loss.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信