Hesham Abdelfattah , Sameh A. Eisa , Peter Stechlinski
{"title":"A new nonsmooth optimal control framework for wind turbine power systems","authors":"Hesham Abdelfattah , Sameh A. Eisa , Peter Stechlinski","doi":"10.1016/j.jfranklin.2024.107498","DOIUrl":null,"url":null,"abstract":"<div><div>Optimal control theory extending from the calculus of variations has not been used to study the wind turbine power system (WTPS) control problem, which aims at achieving two targets: (i) maximizing power generation in lower wind speed conditions; and (ii) maintaining the output power at the rated level in high wind speed conditions. A lack of an <em>optimal control</em> framework for the WTPS (i.e., no access to actual optimal control trajectories) reduces optimal control design potential and prevents competing control methods of WTPSs to have a reference control solution for comparison. In fact, the WTPS control literature often relies on reduced and linearized models of WTPSs, and avoids the nonsmoothness present in the system during transitions between different conditions of operation. In this paper, we introduce a novel optimal control framework for the WTPS control problem. We use in our formulation a recent accurate, nonlinear differential–algebraic equation (DAE) model of WTPSs, which we then generalize over all wind speed ranges using nonsmooth functions. We also use developments in nonsmooth optimal control theory to take into account nonsmoothness present in the system. We implement this new WTPS optimal control approach to solve the problem numerically, including (i) different wind speed profiles for testing the system response; (ii) real-world wind data; and (iii) a comparison with smoothing and naive approaches. Results show the effectiveness of the proposed approach.</div></div>","PeriodicalId":17283,"journal":{"name":"Journal of The Franklin Institute-engineering and Applied Mathematics","volume":"362 3","pages":"Article 107498"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Franklin Institute-engineering and Applied Mathematics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016003224009190","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Optimal control theory extending from the calculus of variations has not been used to study the wind turbine power system (WTPS) control problem, which aims at achieving two targets: (i) maximizing power generation in lower wind speed conditions; and (ii) maintaining the output power at the rated level in high wind speed conditions. A lack of an optimal control framework for the WTPS (i.e., no access to actual optimal control trajectories) reduces optimal control design potential and prevents competing control methods of WTPSs to have a reference control solution for comparison. In fact, the WTPS control literature often relies on reduced and linearized models of WTPSs, and avoids the nonsmoothness present in the system during transitions between different conditions of operation. In this paper, we introduce a novel optimal control framework for the WTPS control problem. We use in our formulation a recent accurate, nonlinear differential–algebraic equation (DAE) model of WTPSs, which we then generalize over all wind speed ranges using nonsmooth functions. We also use developments in nonsmooth optimal control theory to take into account nonsmoothness present in the system. We implement this new WTPS optimal control approach to solve the problem numerically, including (i) different wind speed profiles for testing the system response; (ii) real-world wind data; and (iii) a comparison with smoothing and naive approaches. Results show the effectiveness of the proposed approach.
期刊介绍:
The Journal of The Franklin Institute has an established reputation for publishing high-quality papers in the field of engineering and applied mathematics. Its current focus is on control systems, complex networks and dynamic systems, signal processing and communications and their applications. All submitted papers are peer-reviewed. The Journal will publish original research papers and research review papers of substance. Papers and special focus issues are judged upon possible lasting value, which has been and continues to be the strength of the Journal of The Franklin Institute.