Collaborative scheduling of handling equipment in automated container terminals with limited AGV-mates considering energy consumption

IF 8 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xurui Yang , Hongtao Hu , Chen Cheng
{"title":"Collaborative scheduling of handling equipment in automated container terminals with limited AGV-mates considering energy consumption","authors":"Xurui Yang ,&nbsp;Hongtao Hu ,&nbsp;Chen Cheng","doi":"10.1016/j.aei.2025.103133","DOIUrl":null,"url":null,"abstract":"<div><div>AGV-mates (automated guided vehicle, AGV) are a type of buffering equipment installed in the seaside area of the yard block, which can decouple AGV and yard crane operations. In recent years, an AGV charging function has been integrated in AGV-mates, providing AGVs with an alternative charging method besides battery recovery at the battery swapping station. This has resulted in time constraints and additional energy replenishment decisions in collaborative scheduling optimization, complicating the terminal equipment scheduling problem. Therefore, this paper investigates the collaborative scheduling problem of yard equipment in each operation stage of an automated container terminal, proposes charging-swapping mode for AGV energy replenishment, and develops a mixed integer programming model to minimize equipment no-load energy consumption and operational delay costs. In order to address the difficulty of solving large-scale cases, a solution method based on the variable neighborhood search algorithm is developed. Considering the decoupling and charging characteristics of AGV-mates, local search operators for the AGVs’ task sequence, the yard crane’s task sequence, and the AGV battery swapping task nodes are designed. Finally, the efficiency and effectiveness of proposed solution and operators are verified through a series of numerical experiments. This paper presents practical equipment scheduling solutions and management strategies, compared to a single charging or swapping mode, the charging-swapping mode proposed in this paper has a significant improvement in the no-load cost and the delay cost.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"65 ","pages":"Article 103133"},"PeriodicalIF":8.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034625000266","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

AGV-mates (automated guided vehicle, AGV) are a type of buffering equipment installed in the seaside area of the yard block, which can decouple AGV and yard crane operations. In recent years, an AGV charging function has been integrated in AGV-mates, providing AGVs with an alternative charging method besides battery recovery at the battery swapping station. This has resulted in time constraints and additional energy replenishment decisions in collaborative scheduling optimization, complicating the terminal equipment scheduling problem. Therefore, this paper investigates the collaborative scheduling problem of yard equipment in each operation stage of an automated container terminal, proposes charging-swapping mode for AGV energy replenishment, and develops a mixed integer programming model to minimize equipment no-load energy consumption and operational delay costs. In order to address the difficulty of solving large-scale cases, a solution method based on the variable neighborhood search algorithm is developed. Considering the decoupling and charging characteristics of AGV-mates, local search operators for the AGVs’ task sequence, the yard crane’s task sequence, and the AGV battery swapping task nodes are designed. Finally, the efficiency and effectiveness of proposed solution and operators are verified through a series of numerical experiments. This paper presents practical equipment scheduling solutions and management strategies, compared to a single charging or swapping mode, the charging-swapping mode proposed in this paper has a significant improvement in the no-load cost and the delay cost.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Engineering Informatics
Advanced Engineering Informatics 工程技术-工程:综合
CiteScore
12.40
自引率
18.20%
发文量
292
审稿时长
45 days
期刊介绍: Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信