Prediction of seam tracking errors in the intelligent welding system: A rapid prediction method based on real-time monitoring data

IF 8 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Gang Shang , Liyun Xu , Zufa Li , Lizhen Xiao , Zhuo Zhou , Hanwu He
{"title":"Prediction of seam tracking errors in the intelligent welding system: A rapid prediction method based on real-time monitoring data","authors":"Gang Shang ,&nbsp;Liyun Xu ,&nbsp;Zufa Li ,&nbsp;Lizhen Xiao ,&nbsp;Zhuo Zhou ,&nbsp;Hanwu He","doi":"10.1016/j.aei.2025.103124","DOIUrl":null,"url":null,"abstract":"<div><div>In the field of intelligent welding, using industrial robots to track complex shaped welds is a challenging task. When welding complex seams, the welding tools carried by industrial robots often deviate from the expected center of the weld seams. Especially during thin plate welding, thin plates are prone to random deformation because of uneven heating, which makes automatic seam tracking more difficult. The proposal of the predictive compensation control strategy for seam tracking errors provides a new approach for intelligent seam tracking. For this new approach, the rapid and accurate prediction of seam tracking errors is an important prerequisite for improving the efficiency and accuracy of the intelligent compensation system. To this end, a time-delay recursive discrete grey model (TRDGM) is proposed to predict seam tracking errors in real time. We used the new information priority accumulated generating operation (NIPAGO) to establish a time-delay grey model, and incorporated the recursive least squares method and sparrow search algorithm (SSA) to automatically optimize the parameters of the TRDGM. The prediction performance of the TRDGM was tested by seam tracking error data, which was collected during the process of thin plate automatic welding. According to industrial application requirements, one-step prediction and three-step prediction experiments were conducted. This method was compared with several typical grey models and machine learning methods. The effect of sample size on the TRDGM stability was also investigated. The results show that the TRDGM has better prediction accuracy and stability than the existing methods under small sample conditions. The TRDGM can meet the real-time requirements of automatic control, and its solution time is approximately 0.4 s with a sample size of 80. Meanwhile, the TRDGM can adapt to changes in sample size and performs well in both small and medium sample predictions. The seam tracking experiments show that compared with other prediction methods, TRDGM helps to reduce tracking errors. Based on the real-time monitoring and accurate prediction of seam tracking errors, potential welding risks can be distinguished. On this basis, it can provide operational guidance for industrial robotics to improve the accuracy of automatic seam tracking and welding quality.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"65 ","pages":"Article 103124"},"PeriodicalIF":8.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034625000175","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In the field of intelligent welding, using industrial robots to track complex shaped welds is a challenging task. When welding complex seams, the welding tools carried by industrial robots often deviate from the expected center of the weld seams. Especially during thin plate welding, thin plates are prone to random deformation because of uneven heating, which makes automatic seam tracking more difficult. The proposal of the predictive compensation control strategy for seam tracking errors provides a new approach for intelligent seam tracking. For this new approach, the rapid and accurate prediction of seam tracking errors is an important prerequisite for improving the efficiency and accuracy of the intelligent compensation system. To this end, a time-delay recursive discrete grey model (TRDGM) is proposed to predict seam tracking errors in real time. We used the new information priority accumulated generating operation (NIPAGO) to establish a time-delay grey model, and incorporated the recursive least squares method and sparrow search algorithm (SSA) to automatically optimize the parameters of the TRDGM. The prediction performance of the TRDGM was tested by seam tracking error data, which was collected during the process of thin plate automatic welding. According to industrial application requirements, one-step prediction and three-step prediction experiments were conducted. This method was compared with several typical grey models and machine learning methods. The effect of sample size on the TRDGM stability was also investigated. The results show that the TRDGM has better prediction accuracy and stability than the existing methods under small sample conditions. The TRDGM can meet the real-time requirements of automatic control, and its solution time is approximately 0.4 s with a sample size of 80. Meanwhile, the TRDGM can adapt to changes in sample size and performs well in both small and medium sample predictions. The seam tracking experiments show that compared with other prediction methods, TRDGM helps to reduce tracking errors. Based on the real-time monitoring and accurate prediction of seam tracking errors, potential welding risks can be distinguished. On this basis, it can provide operational guidance for industrial robotics to improve the accuracy of automatic seam tracking and welding quality.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Engineering Informatics
Advanced Engineering Informatics 工程技术-工程:综合
CiteScore
12.40
自引率
18.20%
发文量
292
审稿时长
45 days
期刊介绍: Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信