{"title":"Nonlinear stability of viscous shock profiles for a hyperbolic system with Cattaneo’s law and non-convex flux","authors":"Junyuan Deng , Lan Zhang","doi":"10.1016/j.na.2025.113749","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is concerned with the large time behavior of solutions to the scalar conservation law with an artificial heat flux term. The heat flux is governed by Cattaneo’s law, which leads to a 2 × 2 system of hyperbolic equations. The existence and nonlinear stability of rarefaction waves and viscous shock waves have been derived under the assumption that flux function is strictly convex. In the current paper, we focus on the one-dimensional Cauchy problem for the system which allows for non-convex flux. Under Oleinik entropy condition, we obtain the existence and asymptotic stability of shifted viscous shock waves with sufficiently small wave strength. The proof is based on the standard energy method and shift theory.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"254 ","pages":"Article 113749"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25000045","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is concerned with the large time behavior of solutions to the scalar conservation law with an artificial heat flux term. The heat flux is governed by Cattaneo’s law, which leads to a 2 × 2 system of hyperbolic equations. The existence and nonlinear stability of rarefaction waves and viscous shock waves have been derived under the assumption that flux function is strictly convex. In the current paper, we focus on the one-dimensional Cauchy problem for the system which allows for non-convex flux. Under Oleinik entropy condition, we obtain the existence and asymptotic stability of shifted viscous shock waves with sufficiently small wave strength. The proof is based on the standard energy method and shift theory.
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.