Enhancing understanding of asphalt mixture dynamic modulus prediction through interpretable machine learning method

IF 8 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ke Zhang , Zhaohui Min , Xiatong Hao , Theunis F.P. Henning , Wei Huang
{"title":"Enhancing understanding of asphalt mixture dynamic modulus prediction through interpretable machine learning method","authors":"Ke Zhang ,&nbsp;Zhaohui Min ,&nbsp;Xiatong Hao ,&nbsp;Theunis F.P. Henning ,&nbsp;Wei Huang","doi":"10.1016/j.aei.2025.103111","DOIUrl":null,"url":null,"abstract":"<div><div>Dynamic modulus is a key parameter in pavement design and pavement mechanics analysis. It is essential to accurately predict dynamic modulus and study the relationships between influencing factors and dynamic modulus. In this study, a hybrid prediction model is developed based on Extreme Gradient Boosting (XGBoost) and Whale Optimization Algorithm (WOA). Based on this model, the effects of asphalt binder properties, test condition, asphalt mixture volume parameters, and asphalt mixture gradation on dynamic modulus are analyzed. The contribution of each variable to the model predictions is quantified through Shapley Additive Explanations (SHAP), and the interaction between dynamic modulus and influencing factors is evaluated by Partial Dependence Plot (PDP). The results indicate that the WOA-XGBoost model has excellent accuracy and robustness in predicting dynamic modulus. The three most important factors affecting dynamic modulus prediction results are the complex shear modulus of binder, the test temperature and the asphalt binder viscosity. The increase in dynamic modulus can be achieved through the utilization of asphalt binders characterized by relatively large complex modulus, high viscosity, small phase angle, and high asphalt PG indexes. Reducing the effective binder volume and air voids of the mixture, optimizing the mixture gradation to a suitable level, and increasing the mineral powder content can also lead to the increase of dynamic modulus. Besides, low test temperature and high frequency generally mean a large value of dynamic modulus. This study clarifies the impact of influencing factors on the performance of asphalt mixtures based on machine learning, which lay a foundation for the intelligent design of asphalt mixtures.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"65 ","pages":"Article 103111"},"PeriodicalIF":8.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034625000047","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamic modulus is a key parameter in pavement design and pavement mechanics analysis. It is essential to accurately predict dynamic modulus and study the relationships between influencing factors and dynamic modulus. In this study, a hybrid prediction model is developed based on Extreme Gradient Boosting (XGBoost) and Whale Optimization Algorithm (WOA). Based on this model, the effects of asphalt binder properties, test condition, asphalt mixture volume parameters, and asphalt mixture gradation on dynamic modulus are analyzed. The contribution of each variable to the model predictions is quantified through Shapley Additive Explanations (SHAP), and the interaction between dynamic modulus and influencing factors is evaluated by Partial Dependence Plot (PDP). The results indicate that the WOA-XGBoost model has excellent accuracy and robustness in predicting dynamic modulus. The three most important factors affecting dynamic modulus prediction results are the complex shear modulus of binder, the test temperature and the asphalt binder viscosity. The increase in dynamic modulus can be achieved through the utilization of asphalt binders characterized by relatively large complex modulus, high viscosity, small phase angle, and high asphalt PG indexes. Reducing the effective binder volume and air voids of the mixture, optimizing the mixture gradation to a suitable level, and increasing the mineral powder content can also lead to the increase of dynamic modulus. Besides, low test temperature and high frequency generally mean a large value of dynamic modulus. This study clarifies the impact of influencing factors on the performance of asphalt mixtures based on machine learning, which lay a foundation for the intelligent design of asphalt mixtures.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Engineering Informatics
Advanced Engineering Informatics 工程技术-工程:综合
CiteScore
12.40
自引率
18.20%
发文量
292
审稿时长
45 days
期刊介绍: Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信