{"title":"Boundary value problems for Choquard equations","authors":"Chiara Bernardini , Annalisa Cesaroni","doi":"10.1016/j.na.2024.113745","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the following nonlinear Choquard equation <span><math><mrow><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>V</mi><mi>u</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>∗</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi></mrow></msup><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mspace></mspace><mtext>in</mtext><mspace></mspace><mspace></mspace><mspace></mspace><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mrow></math></span> where <span><math><mrow><mi>N</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, <span><math><mrow><mi>p</mi><mo>∈</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mo>+</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> is a continuous radial function such that <span><math><mrow><msub><mrow><mo>inf</mo></mrow><mrow><mi>x</mi><mo>∈</mo><mi>Ω</mi></mrow></msub><mi>V</mi><mo>></mo><mn>0</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mi>I</mi></mrow><mrow><mi>α</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> is the Riesz potential of order <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>N</mi><mo>)</mo></mrow></mrow></math></span>. Assuming Neumann or Dirichlet boundary conditions, we prove existence of a positive radial solution to the corresponding boundary value problem when <span><math><mi>Ω</mi></math></span> is an annulus, or an exterior domain of the form <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>∖</mo><mover><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mrow><mo>¯</mo></mover></mrow></math></span>. We also provide a nonexistence result: if <span><math><mrow><mi>p</mi><mo>≥</mo><mfrac><mrow><mi>N</mi><mo>+</mo><mi>α</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow></mfrac></mrow></math></span> the corresponding Dirichlet problem has no nontrivial regular solution in strictly star-shaped domains. Finally, when considering annular domains, letting <span><math><mrow><mi>α</mi><mo>→</mo><msup><mrow><mn>0</mn></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span> we recover existence results for the corresponding <em>local</em> problem with power-type nonlinearity.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"254 ","pages":"Article 113745"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24002645","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the following nonlinear Choquard equation where , , is a continuous radial function such that and is the Riesz potential of order . Assuming Neumann or Dirichlet boundary conditions, we prove existence of a positive radial solution to the corresponding boundary value problem when is an annulus, or an exterior domain of the form . We also provide a nonexistence result: if the corresponding Dirichlet problem has no nontrivial regular solution in strictly star-shaped domains. Finally, when considering annular domains, letting we recover existence results for the corresponding local problem with power-type nonlinearity.
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.