Boundary value problems for Choquard equations

IF 1.3 2区 数学 Q1 MATHEMATICS
Chiara Bernardini , Annalisa Cesaroni
{"title":"Boundary value problems for Choquard equations","authors":"Chiara Bernardini ,&nbsp;Annalisa Cesaroni","doi":"10.1016/j.na.2024.113745","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the following nonlinear Choquard equation <span><math><mrow><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>V</mi><mi>u</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>∗</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi></mrow></msup><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mspace></mspace><mtext>in</mtext><mspace></mspace><mspace></mspace><mspace></mspace><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mrow></math></span> where <span><math><mrow><mi>N</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, <span><math><mrow><mi>p</mi><mo>∈</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mo>+</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> is a continuous radial function such that <span><math><mrow><msub><mrow><mo>inf</mo></mrow><mrow><mi>x</mi><mo>∈</mo><mi>Ω</mi></mrow></msub><mi>V</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mi>I</mi></mrow><mrow><mi>α</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> is the Riesz potential of order <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>N</mi><mo>)</mo></mrow></mrow></math></span>. Assuming Neumann or Dirichlet boundary conditions, we prove existence of a positive radial solution to the corresponding boundary value problem when <span><math><mi>Ω</mi></math></span> is an annulus, or an exterior domain of the form <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>∖</mo><mover><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mrow><mo>¯</mo></mover></mrow></math></span>. We also provide a nonexistence result: if <span><math><mrow><mi>p</mi><mo>≥</mo><mfrac><mrow><mi>N</mi><mo>+</mo><mi>α</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow></mfrac></mrow></math></span> the corresponding Dirichlet problem has no nontrivial regular solution in strictly star-shaped domains. Finally, when considering annular domains, letting <span><math><mrow><mi>α</mi><mo>→</mo><msup><mrow><mn>0</mn></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span> we recover existence results for the corresponding <em>local</em> problem with power-type nonlinearity.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"254 ","pages":"Article 113745"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24002645","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the following nonlinear Choquard equation Δu+Vu=(Iα|u|p)|u|p2uinΩRN, where N2, p(1,+), V(x) is a continuous radial function such that infxΩV>0 and Iα(x) is the Riesz potential of order α(0,N). Assuming Neumann or Dirichlet boundary conditions, we prove existence of a positive radial solution to the corresponding boundary value problem when Ω is an annulus, or an exterior domain of the form RNBr(0)¯. We also provide a nonexistence result: if pN+αN2 the corresponding Dirichlet problem has no nontrivial regular solution in strictly star-shaped domains. Finally, when considering annular domains, letting α0+ we recover existence results for the corresponding local problem with power-type nonlinearity.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信