{"title":"Composition of rough singular integral operators on rearrangement invariant Banach type spaces","authors":"Jiawei Tan, Qingying Xue","doi":"10.1016/j.na.2024.113742","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>Ω</mi></math></span> be a homogeneous function of degree zero that enjoys the vanishing condition on the unit sphere <span><math><mrow><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>n</mi><mo>≥</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>. Let <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>Ω</mi></mrow></msub></math></span> be the convolution singular integral operator with kernel <span><math><mrow><mi>Ω</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mo>−</mo><mi>n</mi></mrow></msup></mrow></math></span>. In this paper, when <span><math><mrow><mi>Ω</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>, we consider quantitative weighted bounds of composite operators of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>Ω</mi></mrow></msub></math></span> on rearrangement invariant Banach function spaces. These spaces contain classical Lorentz spaces and Orlicz spaces as special examples. Weighted boundedness of the composite operators on rearrangement invariant quasi-Banach spaces are also given.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"254 ","pages":"Article 113742"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X2400261X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a homogeneous function of degree zero that enjoys the vanishing condition on the unit sphere . Let be the convolution singular integral operator with kernel . In this paper, when , we consider quantitative weighted bounds of composite operators of on rearrangement invariant Banach function spaces. These spaces contain classical Lorentz spaces and Orlicz spaces as special examples. Weighted boundedness of the composite operators on rearrangement invariant quasi-Banach spaces are also given.
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.