Drug repositioning framework using embedding drug-protein-disease similarities with graph convolution network and ensemble learning

Hanaa Torkey , Heba El-Behery , Abdel-Fattah Atti , Nawal El-Fishawy
{"title":"Drug repositioning framework using embedding drug-protein-disease similarities with graph convolution network and ensemble learning","authors":"Hanaa Torkey ,&nbsp;Heba El-Behery ,&nbsp;Abdel-Fattah Atti ,&nbsp;Nawal El-Fishawy","doi":"10.1016/j.iswa.2025.200480","DOIUrl":null,"url":null,"abstract":"<div><div>The benefits of drug repositioning to the pharmaceutical industry have garnered significant attention in the field of drug development in recent years. Deep learning techniques have significantly improved drug repositioning by studying therapeutic drug profiles, diseases, and proteins. As the number of drugs increases, their targets and interactions generate imbalanced data, which may be undesirable as input to computational prediction model. The approach proposed in this paper uses a hierarchical network embedding technique and a graph autoencoder (GAE) scheme to solve this problem. The approach extracts embedding feature vectors of drugs and targets from a heterogeneous multi-source network to predict unknown drug-target interactions (DTIs). We employ a Meta-Path instance that has extensive drug and target characteristic data. The effectiveness of utilizing Meta-Path instance, the number of attention heads, and Graph Convolutional Network (GCN) and ensemble learning algorithm is analyzed on gold-standard datasets to evaluate the accuracy of the model and validity of the discovered DTI. The results achieved by our model using 10-fold cross-validation testing showed an improvement of 2.52 % in prediction accuracy, 4.2 % in recall, 3.94 % in AUC, and 3.6 % in F-score compared to state-of-the-art methods.</div></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"25 ","pages":"Article 200480"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667305325000067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The benefits of drug repositioning to the pharmaceutical industry have garnered significant attention in the field of drug development in recent years. Deep learning techniques have significantly improved drug repositioning by studying therapeutic drug profiles, diseases, and proteins. As the number of drugs increases, their targets and interactions generate imbalanced data, which may be undesirable as input to computational prediction model. The approach proposed in this paper uses a hierarchical network embedding technique and a graph autoencoder (GAE) scheme to solve this problem. The approach extracts embedding feature vectors of drugs and targets from a heterogeneous multi-source network to predict unknown drug-target interactions (DTIs). We employ a Meta-Path instance that has extensive drug and target characteristic data. The effectiveness of utilizing Meta-Path instance, the number of attention heads, and Graph Convolutional Network (GCN) and ensemble learning algorithm is analyzed on gold-standard datasets to evaluate the accuracy of the model and validity of the discovered DTI. The results achieved by our model using 10-fold cross-validation testing showed an improvement of 2.52 % in prediction accuracy, 4.2 % in recall, 3.94 % in AUC, and 3.6 % in F-score compared to state-of-the-art methods.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信