Deep reinforcement learning enables conceptual design of processes for separating azeotropic mixtures without prior knowledge

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Quirin Göttl , Jonathan Pirnay , Jakob Burger , Dominik G. Grimm
{"title":"Deep reinforcement learning enables conceptual design of processes for separating azeotropic mixtures without prior knowledge","authors":"Quirin Göttl ,&nbsp;Jonathan Pirnay ,&nbsp;Jakob Burger ,&nbsp;Dominik G. Grimm","doi":"10.1016/j.compchemeng.2024.108975","DOIUrl":null,"url":null,"abstract":"<div><div>Process synthesis in chemical engineering is a complex planning problem due to vast search spaces, continuous parameters and the need for generalization. Deep reinforcement learning agents, trained without prior knowledge, have shown to outperform humans in various complex planning problems in recent years. Existing work on reinforcement learning for flowsheet synthesis shows promising concepts. We further develop those concepts and present a general deep reinforcement learning approach for flowsheet synthesis. We demonstrate the adaptability of an agent to the general task of separating binary azeotropic mixtures. The agent is trained to set up the discrete process topology alongside choosing continuous specifications for the individual flowsheet elements (e.g., distillation columns and recycles). Without prior knowledge, it learns within one training cycle to craft flowsheets for multiple chemical systems, considering different feed compositions and conceptual approaches. The agent discovers autonomously fundamental process engineering paradigms as heteroazeotropic distillation or curved-boundary distillation.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"194 ","pages":"Article 108975"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424003934","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Process synthesis in chemical engineering is a complex planning problem due to vast search spaces, continuous parameters and the need for generalization. Deep reinforcement learning agents, trained without prior knowledge, have shown to outperform humans in various complex planning problems in recent years. Existing work on reinforcement learning for flowsheet synthesis shows promising concepts. We further develop those concepts and present a general deep reinforcement learning approach for flowsheet synthesis. We demonstrate the adaptability of an agent to the general task of separating binary azeotropic mixtures. The agent is trained to set up the discrete process topology alongside choosing continuous specifications for the individual flowsheet elements (e.g., distillation columns and recycles). Without prior knowledge, it learns within one training cycle to craft flowsheets for multiple chemical systems, considering different feed compositions and conceptual approaches. The agent discovers autonomously fundamental process engineering paradigms as heteroazeotropic distillation or curved-boundary distillation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信