Knowledge-enhanced data-driven modeling of wastewater treatment processes for energy consumption prediction

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Louis Allen, Joan Cordiner
{"title":"Knowledge-enhanced data-driven modeling of wastewater treatment processes for energy consumption prediction","authors":"Louis Allen,&nbsp;Joan Cordiner","doi":"10.1016/j.compchemeng.2024.108982","DOIUrl":null,"url":null,"abstract":"<div><div>Rising energy usage in wastewater treatment processes (WWTPs) poses pressing economic and environmental challenges. Machine learning approaches to model these complex systems have been limited by highly non-linear processes and high dataset noise. To address this, we introduce a novel Knowledge-Enhanced Graph Disentanglement framework for Energy Consumption Prediction (KEGD-EC) that leverages causal inference and graph neural networks. This work combines specific knowledge of causal relationships with a disentangled graph convolutional network architecture to facilitate accurate predictions. In a study on a WWTP in Melbourne, we demonstrate a 59.7% reduction in root mean squared error in energy consumption prediction using KEGD-EC compared to the next best model. We show that causal models built using domain knowledge outperform data-driven causal discovery models for complex systems. These results signify a step forward in applying machine learning to complex manufacturing processes, with the integration of causal knowledge into deep learning architectures posing a promising area of research for predictive analytics in manufacturing.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"194 ","pages":"Article 108982"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424004009","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Rising energy usage in wastewater treatment processes (WWTPs) poses pressing economic and environmental challenges. Machine learning approaches to model these complex systems have been limited by highly non-linear processes and high dataset noise. To address this, we introduce a novel Knowledge-Enhanced Graph Disentanglement framework for Energy Consumption Prediction (KEGD-EC) that leverages causal inference and graph neural networks. This work combines specific knowledge of causal relationships with a disentangled graph convolutional network architecture to facilitate accurate predictions. In a study on a WWTP in Melbourne, we demonstrate a 59.7% reduction in root mean squared error in energy consumption prediction using KEGD-EC compared to the next best model. We show that causal models built using domain knowledge outperform data-driven causal discovery models for complex systems. These results signify a step forward in applying machine learning to complex manufacturing processes, with the integration of causal knowledge into deep learning architectures posing a promising area of research for predictive analytics in manufacturing.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信